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Abstract

By using the Mellin transform technique in conjunction with the image method, the two-dimensional full-field
solutions of dissimilar isotropic composite annular wedges subjected to anti-plane concentrated forces and screw dis-
locations are presented in explicit forms. The composite wedges consist of two materials that have equal apex angle and
are bonded together along an interface. The explicit full-field solutions are presented in series forms for combinations of
traction and displacement boundary conditions. For the special case of composite sharp wedges with finite radius or
infinite extent, the solutions with functional forms are obtained and only consist of simple trigonometric functions.
Explicit solutions of the stress intensity factors are obtained for a semi-infinite interface crack and a circular composite
disk with an interface crack. With the aid of the Peach—Koehler equation, the explicit forms of the image forces exerted
on screw dislocations are easily derived from the full-field solutions of stresses. Numerical results of full-field stress
distributions and image forces exerted on screw dislocations are presented and discussed in detail.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The stress analysis for the wedge problem with infinite length has been investigated by many authors.
Some authors devoted efforts on deriving the full-field stress distribution in the wedge and others investigate
the stress singularities near the apex of the wedge. The isotropic wedge problem was first considered by
Tranter (1948) by using the Mellin transform in conjunction with the Airy stress function representation of
plane elasticity. Williams (1952) obtained the solution of dissimilar materials with a semi-infinite interface
crack and observed the stress oscillation near the crack tip. Chou (1965) investigated the screw dislocation
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near a shape wedge boundary by means of the conformal mapping technique. In his study, the method of
image for anti-plane single wedge and image force on screw dislocation was discussed in detail. Bogy (1971,
1972) used complex function representation of the generalize Mellin transform to obtain the solution of the
plane problem of dissimilar wedge and single wedge with infinite extent. Ma and Hour (1989) investigated
the problem of dissimilar anisotropic wedge subjected to anti-plane deformation and discussed the stress
singularity near the apex of wedge. Ting (1984, 1985) discussed the paradox which existed in the elementary
solution of an elastic wedge. Zhang et al. (1995) studied the problem for the interaction of an edge dis-
location with a wedge crack. Kargarnovin et al. (1997) solved the problem of an isotropic wedge with finite
radius subjected to anti-plane surface traction. The solution of anisotropic single wedge was obtained by
Shahani (1999). However, both of the solutions were represented with an infinite series form. Kargarnovin
(2000) studied the dissimilar finite wedge under anti-plane deformation and obtained only the near-tip field
solution. Wang et al. (1986) investigated the stress intensity factor for the rigid line inclusion under anti-
plane shear loading. He and Hutchinson (1989a,b) analyzed several problems which provided insight and
quantitative information on the role an interface between dissimilar elastic materials plays when ap-
proached by a crack. The condition that a crack impinging on an interface will pass through the interface or
be deflected into the interface was discussed in detail.

For engineering applications, layer and wedge configurations are two problems that are commonly
analyzed in the literature. The use of the image method in solving two-dimensional anti-plane problems is
well-known. The anti-plane full-field solution of a single layer can be obtained by using an infinite array of
image singularities to account for the boundary conditions of the two free or fixed surfaces. The results are
identical to the work by using the method of Fourier transform in conjunction with series expansion. Chou
(1966) used the technique of image method to construct the full-field solution of three phase lamellar
structure subjected to a screw dislocation. The anisotropic case was obtained by Lin and Chou (1975). Chu
(1982) used the conformal mapping technique to construct the closed-form solution of two phase isotropic
thin film subjected to screw dislocation. The image method plays the essential role in these works. The
method of image has been successfully extended to solve the problem of multilayered media with anti-plane
shear deformation. By using a linear coordinate transformation and the Fourier transform technique, an
effective analytical methodology was developed by Lin and Ma (2000) to obtain explicit analytical solutions
for an anisotropic multilayered medium with n layers subjected to an anti-plane loading or a screw dis-
location in an arbitrary layer. However, the image method for wedge problem under anti-plane defor-
mation is restricted for special apex angles (Chou, 1965).

In this study, the finite annular dissimilar composite wedge with equal apex angle subjected to anti-plane
concentrated loadings and screw dislocations is investigated by analytical methods. The boundary condi-
tions prescribed on radial edges, either tractions or displacements, are discussed in detail. In each problem,
different boundary conditions prescribed on the circular segments are presented with the aid of the image
method. The analytical solutions of composite sharp wedges with infinite length along the radial direction
are first solved by a straightforward application of the Mellin transform, and the solutions are expressed in
simple explicit functional forms. Based on the image method, the full-field solutions for composite sharp
wedges with a finite radius are also presented in explicit functional forms. The analytical solution of the
stress intensity factor of the circular composite disk with an interface crack is also obtained. In order to
solve the finite annular dissimilar wedge problem, the image method is used to satisfy the boundary con-
ditions on two circular segments based on the available solutions with functional forms of the infinite wedge
problem. Base on the complete analytical solutions of stress fields for the wedge problem, the image forces
exerted on screw dislocations are given in explicit forms with the aid of the Peach—Koehler equation.
Numerical calculations of stress distributions are provided for traction or displacement boundary condi-
tions. The full-field stress distributions and image forces exerted on screw dislocations for composite sharp
wedge with finite radius and finite annular dissimilar composite wedge are studied in detail from numerical
investigations.
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2. Basic equations and general solutions

Consider an isotropic composite sharp wedge with infinite length along the radial direction and with an
apex angle f (0 < f<2n) as shown in Fig. 1. Let 1, 2 denote the open two-dimensional regions which
occupies the same apex angle /2. The composite wedge is perfectly bonded together along a common edge.
For the anti-plane shear deformation, the non-vanishing displacement component is along the z-axis,
w(r, 0), which is a function of in-plane coordinates r and 0. In the absence of body forces, the equilibrium
equation for a homogeneous isotropic material in terms of displacement is given by

Pw 1ow 1 3w
T M

The non-vanishing shear stresses are

ow u ow

o’ r 00

where u denotes the shear modulus of an isotropic material. In addition, we shall require the stress fields to
satisfy the regularity conditions

Trz(ra 6) =H T()z(ra 9) =

T.70. = O ') asr—oo ford>0 (2)

Mellin transform method is convenient for solving the problems in polar coordinate. Let the Mellin
transform of a function f(r) be denoted by f(s), then

1 c+ioco

76 =M 0hs] = [0t ) =m s =5 [ Foras
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where s is a complex transform parameter. The Mellin transform of w(r, 0), rt,.(r,0) and rty,(r,0) in the
transform domain are given by

w(s, 0) = /000 w(r, 0)r'~'dr (3a)
,.(s,0) = /Ooc T, (r, 0)r dr (3b)
%o.(s,0) = /00C 10.(r, 0)r* dr (3c)

By use of the inversion theorem for the Mellin transform, the stresses and displacement components are
given by

B2 2

Bi2
r

0 1 X

Fig. 1. The geometry configuration and coordinate of a composite sharp wedge with infinite length and equal apex angle /2.
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1 p+ico X »
w(r, 6):%/‘ w(s, 0)r—*ds (4a)
p—ico
1 p+iooA o
) =5 [ s 0 s (4b)
p—icco
1 p+ico '
70.(r, 0) :E/ To-(s,0)r " ds (4c)
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Because of condition (2), the path of integration in the complex line integrals Re(s) = p in (4a)—(4c) must
lie within a common strip of regularity of their intergrands, the choice of p is taken to be

p=—¢ 0<e<(Re(s))|)

where s; denotes the location of the pole in the open strip —1 < Re(s) < 0 with the largest real part and Re
denotes the real part of the complex argument.

Applying the Mellin transform (3a) to (1) yields an ordinary differential equation for w(s, 6), the general
solution of this ordinary differential equation is readily known to be

w(s, 0) = ¢ sin(s0) + ¢, cos(s0) (5)
where ¢; and ¢, can be determined from the boundary conditions. The general solutions of stress com-
ponents in the transform domain are

7,.(s,0) = —ps(cy sin(s6) + ¢, cos(s6)) (6a)

9.5, 0) = ps(cy cos(s0) — ¢y sin(s6)) (6b)

3. Green’s function of infinite composite wedge
3.1. Free—free boundary condition

Consider a composite sharp wedge with infinite length along the radial direction and possess the apex
angle f§ subjected to a concentrated loading f, located at (r,0) = (d, ) in material 1 as shown in Fig. 2.
Perfect bonding along the interface 0 = /2 is ensured by the stress and displacement continuity conditions,
and the traction free boundary conditions on the two radial edges are considered first in this section. The
region of the wedge is divided into three parts along the apex of wedge and the location of concentrated
loading as shown in Fig. 2. The general solutions for material 1 are expressed as

y
BI2 2
B2
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d .@©
/,/"Ra 1 X

Fig. 2. A composite sharp wedge with infinite length subjected to a concentrated force located at » = d and 6 = o.
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Wl (s,0) = ¢ sin(s0) + ¢; cos(sf) for 0<0 < « (7a)

W (s,0) = ¢ sin(s0) + ¢ cos(s0) for o < 0< /2 (7b)
For material 2, the general solution is

W (s,0) = d sin(s0) + d cos(s0) for B/2< OB (8)
The associated traction free boundary conditions on the two radial edges are given by

)

iz

=Y To-

0=0

1) | =—nd, w0 =0 (10)

0=o O=ot

O=ot

The continuity conditions along the interface 6 = 5/2 are

w"(r, /2) = w@(r, B/2), <) (r,B/2) =<2 (r, B/2) (11)

From Egs. (7a), (7b) and (8) with the aid of conditions (9)—(11), the complete solutions in the transform
domain for materials 1 and 2 are

W) = Mf;ii‘i(sﬁ) [cos(s(B — 0+ ) + cos(s(B — 0 — ) + k cos(s(0 — @) + kcos(s(0 + 2))]

20 = 2;&‘;’;) [cos(s(B — 0+ %)) + cos(s(B — 0 — ) + kcos(s(0 — @) + kcos(s(0 + )] (12a)
Al = 25{;‘213) [sin(s(f — 0 + o)) + sin(s(f — 0 — o)) — ksin(s(0 — o)) — ksin(s(0 + o))]

W9 TS a0s(s(8 = 0+ 2) + cos(s( — 0~ )]

2 ot eos(o( 0+ )+ cos(o(f 0 )] (12b)
o) = e fgin(s(§— 0+ ) + sin(s(B — 0 — )]

(1 + o) sin(sp)

where &k = (¢, — 1)/ (1, + 1,). Rewrite the apex angle f in the form = n/n, n is a real positive number
and 1/2<n < oo. When n = 1/2, we have f = 2=, and this corresponds to the bimaterial interface crack
problem. The useful formulations of inverse Mellin transform are summarized as follows:

M- sin(s¢) | _n " sin(nd)
sin (sZ) | 7w 142/ cos(ng) 4 r
<R€[S]<17 0<¢<n/n’ n>1/2 (13)
M- cos(s¢p) | _n  1+7r"cos(ng)
sin (Sf) w142 cos(ng) + 12

The complete solutions of displacement and stresses for material 1 subjected to a concentrated loading are
obtained with the formulations given in Eqgs. (12a) and (13) as follows
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wl) = 4‘71;11 [Q((r/d)",n(0 — ) + Q ((r/d)",n(0 + a)) + kQ* ((r/d)",n(0 — &)) + kQ" ((r/d)",n(0 + ))]
(14a)
) = ;—Zr [T ((r/d)",n(0 — o)) + T~ ((r/d)",n(0 + ) + kI'*((r/d)", n(0 — o)) + k" ((r/d)",n(0 + o))]
(14b)
ol = 2 (0 (¢ n(0 — 2)) + O ((r/d)", (0 +20) — KO ((r/d)", (0 — ) — KO ((r/d)", (0 + )
(14c)
For material 2, the full-field solutions are
2o fF g r/d)", n(0 — “((r/d)",n

W()_Zﬂ(,u'l 0 [Q7((r/d)",n(0 — o)) + Q" ((r/d)", n(0 + )] (15a)

T(Z>ZLJZ’;’ " n(0—a “((r/d)",n o
2 = () n(0 = )+ T (/) {0+ ) (15b)
W2 = — ML (o (1)) (0 — 2) + O ((r/d)', (0 + ) (15¢)

m(uy + wp)r

where

R%2+ Rcos @
Qf(R,®) = In(l £ 2Rcos® + R?), I*(R, @)=
( i ) n( Cos + )7 ( ) ) 1:':2RCOS€D+R2

Rsin @
O*(R, D) =
(R, ®) 1 +2Rcos®P + R?

The full-field solutions of displacement and stresses for a screw dislocation with Burger’s vector b, located
at (r,0) = (d,a) can be obtained by the similar procedure and the results are

wil) = _2—[:; (P~ ((r/d)",n(0 — ) — P ((r/d)",n(0 + @) + kP*((r/d)",n(0 — 0)) — kP ((r/d)",n(0 + a))]
(16a)

) =0 10 (/)" m(0 — 29) — (/)" (0 +20) — kO (/)" n(0 — 2)) + kO" ((r/d)", (0 + )

(16b)
o) = T (1 ((r ) (0 — 20) — I (/) (0 + 2)) + KT (/)" (0 — 20) — KT (/)" n(0 -+ )]
(16¢)

_ —H bz — n — n
W = s (/) 0 = o)) = ¥ (/)" (0 + )] (17a)
o) = D0 (1 d) n(0 — )~ O (r/d) n(0+ ) (176)

R
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2 = I (o) (0= ) = I (/) 0+ ) (179
where
(R, 0) — tan ! — R FDsin® (18)

(R+1)(1 4+ cos®)

It is surprising to note that the exact full-field solutions for materials 1 and 2 consist of only four and two
terms, respectively. Each term is only a combination of simple trigonometric functions. These basic solu-
tions will be used to construct the analytical solutions for the composite wedge with finite radius and the
finite annular composite wedge problems in the next two sections. The asymptotic displacement and stress
fields near the wedge apex for applying a concentrated load can be easily derived from Egs. (14) and (15) by
taking the limit » — 0. The singular fields near the wedge apex of material 1 are

IE% w(r,0) = —7%('7:]3_@ (r/d)"{cos(n(0 — o)) + cos(n(0 + «))} (19a)
lim <) (r,0) = — #jfuz)r (r/d)" {cos(n(0 — x)) + cos(n(0 + )} (19b)
ni f

lim (r, 0) = (r/d)"{sin(n(0 — ) + sin(n(0 + a))} (19¢)

Ty + po)r

For material 2, the singular fields are

lim ) (r,0) = m (r/d)" {cos(n(0 — 2)) + cos(n(0 + )} (20a)
lim <2/(7, 0) = — W (r/d)"{cos(n(0 — o)) + cos(n(0 + a))} (20b)
. 2 niLf. nyos .

lim 2 (r,0) = pe TR (r/d)"{sin(n(0 — «)) + sin(n(0 + o))} (20¢)

It is clearly shown in Egs. (19) and (20) that the order of the stress singularity is 1 — 7/f and is independent
of the two material constants. The stress fields are bounded for the composite wedge with 0 < § < . The
angular dependence of displacement and stresses near the wedge apes as presented in Eqgs. (19) and (20) are
the same as those obtained by Ma and Hour (1989).

For the special case of a semi-infinite interface crack, i.e., n = 1/2, the solutions of shear stress 1y, for
materials 1 and 2 for applying a concentrated load are reduced to simple formulations as follows

m_le (/) Psin((0=/2) , (r/d) sin((0+2)/2)

" dnr | 1= 2(r/d) P eos((0— @) /2) +r/d 1 —2(r/d)"? cos((0+ 2)/2) + r/d
 k/d)Psin((0-w)/2)  k(r/d)"sin((0+2)/2) (1)
1+ 2(r/d)" " cos((0 — 0)/2) +r/d 1+ 2(r/d)"* cos((0 + )/2) + r/d
0 (r/d)"?sin((0 — 2)/2) N (r/d)"?sin((0 + 2)/2) (21b)
2y e | 1= 2(r/d) P cos((0 — 0)/2) +r/d 1 —2(r/d)"*cos((0+ 0)/2) + r/d
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The solutions for applying a screw dislocation are

" dar

o b [ rfd = ) Peos((0 = 0/2) rjd— (/)P cos((0 4 0)/2)
62 1—2(r/d)"*cos((0 — @) /2) +r/d 1 —2(r/d)"* cos((0 + )/2) + r/d

rfd+(r/d) Peos((0—)/2)  rfd+(r/d)" cos((0+)/2) (220)
14 2(r/d) ? cos((0 — a)/2) +r/d 1+ 2(r/d)"* cos((0+ «)/2) + r/d
[0 _ kb rjd = (r/d)"?cos((0=2)/2)  r/d—(r/d)"cos((0+=)/2) (220)
"2y A+ )r | 1= 2(r/d) P cos((0 — 0)/2) +r/d 1 —2(r/d)"*cos((0+ a)/2) +r/d

The well-known result of square root singularity near the interface crack tip is clearly indicated in Egs. (21)
and (22). The corresponding result of mode III stress intensity factor can be derived from Egs. (21) and (22)
and are expressed as

. S

K = lim V2mrtg,_, = \/27r_d(1 — k) cos(/2) (23)
. b, .

Ku = 15% V2rrte|,, = \/;W(l — k) sin(a/2) (24)

It is noted that for special apex angles, i.e. § = n/n, where n is an integer, the solutions expressed in Egs.
(14) and (15) can be decomposed into a finite number of Green’s functions of an infinite plane subjected to
concentrated forces. For these special angles, the Green’s function of the infinite composite wedge problem
can be obtained by the method of image. The numbers (N) and locations (7, 0) of image singularities of
materials 1 and 2 can be expressed as follows:

For material 1,

N=4n-1
{(r 0) <(d, —o) (25)
’ dmpta) m=1,2,...,2n—1

and for material 2,

N =2n
{(r,@):(d,Zmﬁ:I:oc) m=0,1,....n—1 (26)

In fact, the numbers and locations of image singularities of material 1 and 2 are dependent only on the apex
angle of the composite wedge. For example, the geometry configuration of image singularities for material 1
and material 2 of the composite wedge with apex angle = 90° are shown in Figs. 3 and 4, respectively.
There are seven and four image singularities for material 1 and material 2, respectively. Therefore, the full-
filed solutions of a composite sharp wedge with special apex angles can also be represented by a series with
finite terms. For material 1, the solutions of series form can be summarized as

H_ S o ~
W()_MZ[Q (r/d,0 —2(m — Vr/n+ o) +Q (r/d,0 — 2(m — )n/n — o)

m=I

+kQ (r/d,0 — 2m— D)r/n+a)+kQ (r/d,0 — 2m — 1)n/n — a)] (27a)
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Image point

Image point
(o] ]

Fig. 3. The locations of image singularities for wedge 1 with an apex angle /2 = 45°.

Image point
g‘—’,f

Fig. 4. The locations of image singularities for wedge 2 with an apex angle /2 = 45°.

) — 2{; 2”: [~(r/d,0 —2(m— Dr/n+a)+ T (r/d,0 —2(m — 1)n/n — o)

AT/, 0— (2 — )+ 2) + KT (r/d, 0 — (m — )/ — )

o) = 2{; Z [0 (r/d,0 = 2(m — V)m/n+ o) + O (r/d,0 — 2(m — D)n/n — o)

m=1

+kO (r/d,0 — 2m — )n/n+o) + kO (r/d,0 — 2m — 1)n/n — o)]

For material 2, the solutions are

Z—L y (r —2m—1)n/n (r —2m—1)n/n —

W()_Zn(uﬁuz);[g (r/d,0 —2(m — \)/n+ o)+ Q (r/d,0 — 2(m — 1)n/n — a)]
1(2):#72]2 y “(r —2m—1)n/n+«a “(r —2m—1)n/n—«a

e n<m+u2)r;[l“ (r/d,0=2(m —V)n/n+ o)+ I (r/d,0 = 2(m — 1)n/n — a)]
) Maof- -

Z [ (r/d,0 —2(m — \)n/n+a)+ O (r/d,0 —2(m — 1)n/n — a)]

m=1

T, =
o (i + po)r

6049

(27b)

(27¢)

(28a)

(28b)

(28¢)

Egs. (27) and (28) present the solutions for the same problem as that in Eqs. (14) and (15) for the special
case that n is an integer. Obviously, the solutions in Eqs. (14) and (15) have simple forms and are also valid

for the case that » is not an integer.
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3.2. Fixed—fixed boundary condition
By using the similar method, the solutions of composite wedge with fixed displacement boundary

condition at the two edges, i.e., 0 = 0 and 0 = f, subjected to a concentrated load can be obtained and
summarized as follows

W) = L0 (1) n(0 = ) — @ (/)" n(0+ ) — K (/)" (0 = ) + k@ ((r/d)', (0 + )]

4mp,
(29a)
i) = ;—ﬁ[r’((r/d)",n((? —a)) = I ((r/d)",n(0 + o)) — k" ((r/d)",n(0 — &) + kI""((r/d)",n(0 + 2))]
(29b)
T = % (O ((r/d)",n(0 — 0)) = O ((r/d)",n(0 + «)) + kO ((r/d)",n(0 — o)) — kO ((r/d)",n(0 + o))]
(29¢)
for material 1, and

y___fo “((r/d)",n(0 —a)) — Q ((r/d)",n o
WO = s S ()00 - ) — @ () (0 + ) (302)

rm:i’wﬂrz “((r/d)",n(0 — o)) — I ((r/d)",n o
n(,ul—I—,uz)r[F ((r/d)",n(0 —a)) — I ((r/d)",n(0 + «))] (30b)
o = (o (r/a)’ n(0 - ) — O ((r/d)', (0 + )] (30¢)

(g + pp)r

for material 2. The solutions for applying a screw dislocation are

wil) = _z—l: (P ((r/d)",n(0 — o))+ ¥ ((r/d)",n(0+ a)) — kP ((r/d)",n(0 — o)) — kP ((r/d)",n(0 + «))]

(31a)
O = ”;1;’ [©((r/d)',n(0 — ) + O ((r/d)", (0 + @) + kO ((r/d)", (0 — %)) + kO ((r/d)",n(0 + %))]
(31b)
o) = TP () (0 — 20) + T (/)" (0 + 20) — KT (/)" (0 — 2)) — K (/) (0 -+ )]
(31¢c)
for material 1, and
w? = M [P~ ((r/d)",n(0 — o)) + ¥~ ((r/d)",n(0 + o))] (32a)
@ = (o (1 /a)" n(0 - 2)) + O ((r/d) (0 + )] (320)

- on( + p)r



R.-L. Lin, C.-C. Ma | International Journal of Solids and Structures 41 (2004) 6041-6080 6051

(2) _n:u]:quz — n — n

=————=— I ((r/d)",n(0 —a))+ T ((r/d)",n(0 + o 32¢
0- n(ﬂl+ﬂ2)r[ ((r/d)",n(6 — 2)) ((r/d)",n(0 + )] (32¢)
for material 2. It is interesting to note that the elementary functions appear in the solutions are the same for
the free—free (Eqgs. (14)—(17)) and fixed—fixed (Egs. (27)-(30)) boundary conditions.

4. Composite wedge with a finite radius and the method of image

Consider an isotropic composite wedge with a finite radius b and equal apex angle /2 subjected to a
concentrated force f; applied at the location (r,6) = (d, =) as shown in Fig. 5. In order to obtain the closed-
form solution of this problem without using the mathematics derivation, the image method for circular
configuration is used. Based on the result presented by Lin and Ma (2003) for the problem of single wedge
with finite radius that for the loading applied at the location (d, ), the location of the corresponding image
singularity for the circular boundary is (b*/d, ) and is indicated in Fig. 6. The magnitude of the image
singularity depends on the boundary condition at the circumference segment. The summation of the
solutions for the applied loading at (d,«) and (b*/d,«) (the image point) for the composite wedge with
infinite length will satisfy the boundary condition (traction free or fixed) on the circular segment » = b.
Since the analytical solution for composite wedge with infinite length has been developed in the previous
section, the solution for the composite wedge with a finite radius can be easily obtained without difficulty.
The solutions of the stress field 74, are presented for various boundary condition as follows.

[

=

VY
Image
2 point
f, b,zfq"”fz
//@//
L-"Ya 1| x

Fig. 6. The location of the image singularity with respect to the circular boundary.
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4.1. Free—free—free boundary condition

Consider the wedge are traction free for all boundaries, and one pair of self-equilibrium forces f, are
applied on the wedge at locations (r, 0) = (d, ;) and (d>, o) in material 1. The solutions for shear stress 7y,
are

2

o) =2 S (=)0 ((#/dn)" 1(0 = 0)) + O~ (/)" n(0 + ) — kO ((r/d,)", n(0 — a,,))

- 2mr —
— kO ((r/d,)",n(0 + a,)) + O ((rd, /b*)",n(0 — a,)) + O ((rd, /b*)", n(0 + a,))
— kO ((rd,/b*)",n(0 — ) — kO ((rd,,/B*)", n(0 + at,,))] (33)

for material 1, and
B = L S 1) O (/) (0= )+ O (/) (0 + )
+ O ((rdy/b)",n(0 = ) + O ((rdy /D7), (0 + 0,))] (34)

for material 2. For a special apex angle that n = 1/2, which represents the problem of a composite circular
disk with an interface crack length b, the associated shear stresses 7y, are

) = L SO () (0~ ) /2) + O (/) (04 0)/2) KO (/).

(0= ) /2) = kO (/)" (0 + 0) /2) + O ((rd /5*)'2, (0 = ) /2) + O (1, /1),
(9 + O(m)/Z) - k@+((rdm/b2)]/2a (9 - O(m)/Z) - k@+((rdm/b2)l/27 (6 + O‘M)/z)] (353')

2 o f- 2 mrl [ o 1/2 - 1/2
To- _m;(_l) [@ ((r/dm) ,(9—0(,,,)/2)—‘1-@ ((r/dm) / a(0+“m)/2)

+ O ((rdy /6), (0 = 2,)/2) + © ((rdn /%), (0 + O<m)/2)} (35b)

The corresponding stress intensity factor of this problem is

= /- (1 =k)[(1+di/b)cos(o1/2) — (1 + dr/b) cos(aa/2)] (36)

0= /2md

For the problem that a screw dislocation with Burger’s vector b, is applied at the location (r, ) = (d, ) in
material 1. The solutions for shear stress 7y, are

K”[ = lim Vv 27[}’"ng
r—0

o) = T [ () m(0 = ) — T ((r/d) n(0 4 @) + KT (r/d) n(0 — 2))

2nr
— kI ((r/d)",n(0 4+ «)) — I~ ((rd /b*)",n(0 — o)) + T~ ((rd /b*)",n(0 + «))
— kI ((rd/B?)" ,0(0 — ) + kI ((rd /b)", n(0 + )] (37)

for material 1, and

2 = () 0= ) = (/) 0-+2) = I (/80 = )

+ I ((rd /5" (0 + )] (38)
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for material 2. For a special apex angle that § = 2n (n = 1/2), the associated shear stresses 1, are

o = T a2 (0 — ) 2) — T ((r/d) 2 (0 + 2)/2) + KT (r)d) 2, (0 — 2)/2)

4nr
— KL ((r/d)' (0 + o) /2) = T ((rd /5)'%, (0 = 2)/2) + T ((rd /5°)'2, (0 + 2) /2)
— kI ((rd /6%)',(0 = 2)/2) + kT ((rd /67)'2, (0 + ) /2) (39a)
L@ _ — Wy b (V2 (0 — o () " T (rd BV (0 — o
0- —Zn(u1+u2)r[r ((r/d)"", (0 =) /2) =T ((r/d)"", (0 + @) /2) = I ((rd /b7) "7, (0 — ) /2)
I ((rd/0) 7, (04 ) /2)] (39b)

The corresponding stress intensity factor for this problem is

. b. .
K = lim V2re,| = 5;7761 (1 —k)(1 — d/b)sin(a/2) (40)

4.2. Free—free—fixed boundary condition

Consider the composite wedge is fixed along the circular segment » = b and is traction free on the radial
edges 6 =0 and 6 = . A concentrated loading f; is applied at the location (r,6) = (d,«). The full-filed
solution for material 1 is

o) = 2 [0 (/) n(0 — ) + O ((r/d)',n(0+ 2)) — KO (/)" (0 )

— kO ((r/d)",n(0 + o)) — O ((rd/b*)",n(0 — a)) — O ((rd /b*)", n(0 + «))
+ kO ((rd /b*)",n(0 — ) + kO™ ((rd /b*)",n(0 + x))] (41)

For material 2, the solution is

2 = L [0 (/) (0= )+ O (o) n(0 + ) = O (5 (0~ )

— O ((rd/b?)",n(0 + 2))] (42)

For the special case that n = 1/2, a composite circular disk with an interface crack length b, the stress
intensity factor is

__f (1 —k)(1 —d/b)cos(x/2) (43)

0=n  \/2nd

Klll =limvV 27'5]”’[()2
r—0

4.3. Fixed—fixed—free boundary condition

Let the composite wedge be traction free at the boundary » = b, and the boundaries 0 = 0 and 0 = f§ are
fixed. The concentrated loading f; (or the screw dislocation b,) is applied at the location (r,0) = (d, o), the
full-field solutions are
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o) = 210 ((r)d)" n(0 — %)) — O ((r/d)",n(0 + %)) + kO ((+/d)", n(0 — )

2nr
— kO ((r/d)",n(0+ «)) + O ((rd/b*)",n(0 — 2)) — O ((rd /b*)", n(0 + )
+ kO ((rd/b*)",n(0 — x)) — kO" ((rd /b*)",n(0 + x))] (44)
o) = T [ (/) (0~ 2)) + T (/)"0 4 2)) — KT (/) n(0 ~ )
— kI ((r/d)",n(0 + o)) — T~ ((rd/b>)",0(0 — «)) — T~ ((rd /b*)",n(0 + «))
+ kI ((rd /B7)" (0 — o)) + kI ((rd /)", 0(0 + o))] (45)
for material 1, and
1(2):4’”&}2 “((r/d)" , n(0 — o)) — O ((r/d)", n o “((rd/BH)", (0 — o
b A (O ((r/d)",n(0 — a)) — O ((r/d)",n(0 + 2)) + O ((rd /b*)", n(0 — «))
— O ((rd/b*)",n(0 + )] (46)
1(2)27—71[11/1252 “((r/d)",n(0 — a “((r/d)",n o)) — I ((rd/b*)", n(0 — «
o n(ﬂl+ﬂ2)r[F ((r/d)",n(0 — ) + T~ ((r/d)",n(0 + ) — T ((rd /b")", n(0 — &)
— I ((rd/b*)",n(0 + )] (47)

for material 2. For the special case that n = 1/2, a composite circular disk with an interface crack length b,
the stress intensity factor is

KIII = 1{% \/2‘7%;1',2 e = \/jg%a.(l — k)(l + d/b) SIH(OC/Z) (48)
K = lim V2mr,. L= \%%(1 +k)(1 —d/b)cos(x/2) (49)

4.4. Fixed—fixed—fixed boundary condition

The composite wedge is fixed for all boundaries, a concentrated forces f, is applied on the composite
wedge at the location (r,0) = (d, o). The solution of material 1 is

& = = [0 ((r/d)" (0 — 2)) — @ ((r/d)" (0 + %) + kO (r/d)", (0 — )

2nr
—kO*((r/d)",n(0 + 2)) — O ((rd/b?)",n(0 — 2)) + O ((rd/b?)", n(0 + 2))
— kO ((rd/b*)",n(0 — 0)) + kO ((rd /b*)",n(0 + 01))] (50)
For material 2, it is
1(2):4’1M2ﬂ “((r/d)",n(0 — ) — O ((r/d)",n %)) — O ((rd/b*)",n(0 —
= = 2l ) [0 ((r/d)",n(0 — o)) — O ((r/d)",n(0 + 2)) — O ((rd/b)",n(0 — o))
+ 0 ((rd/b)",n(0 + )] (51)

For the special case that n = 1/2, a composite circular disk with an interface crack length b, the stress
intensity factor is
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K = lim Vare| =L (1= kysin(a/2)1 - /) (52)

The full-field solutions of displacement w and shear stress 7. are presented in Appendices A and B for
applying a concentrated load and a screw dislocation, respectively. The anti-plane deformation of a single
isotropic wedge with a finite radius was studied by Kargarnovin et al. (1997) using the finite Mellin
transform and the full-field solution was presented by complicated formulation with an infinite series form.
However, the explicit full-field solutions for a composite wedge with a finite radius presented in this section
only consist of finite terms. The solutions for a single wedge with a finite radius can be easily obtained by
setting y; = p, = u and k£ = 0. The image method used in this section for the circular boundary will be
extended in the next section to solve the more complicated finite annular composite wedge problem.

5. The annular composite wedge

Consider an annular composite wedge with equal apex angle /2 and finite radii at » =« and r = b as
shown in Fig. 7. The methodology for constructing the analytical solution for this complicated problem is
similar to that used in the previous section. By using the closed-form solution of a composite wedge of
infinite extent presented in Section 3 and the method of image to satisfy two circular boundaries at » = a
and » = b, the complete solutions for the composite annular wedge can be easily constructed for various
boundary conditions. Since two circular segments are involved in this problem, the infinite number of image
singularities should be used to satisfy the two boundary conditions at » = a and r = b.

5.1. Free—free—free—free boundary condition

The first case considered in this section is an annular composite wedge subjected to one pair of self-
equilibrium forces f; at (r,0) = (di, o) and (d», o) in material 1 with traction free boundaries. The four
boundary conditions are

{ 70:(r,0) = 19.(r,8) =0 for a<r<b (53)

1.(a,0) = 1,.(b,0) =0 for 0<0< B

To avoid the tedious expression of the full-field solutions for this problem, only the stress component 7y, is
presented in this section. The full-field solutions of displacement w and stress component 7,, are summa-
rized in Appendix C. The full-field solutions 74, are

|
/

Fig. 7. Schematic diagram of a concentrated force applied in a composite annular wedge.
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00 2
n.fz I?l — — —

A =S S S O (5 6) + O (7 91) KO () — KO (7, )] (54)

(=0 j=1 m=I

for material 1, and
00 4 2

(2) nlulfz m+1 — — _ +
T, = 1 O (ri, ¢ )+ O (r,¢ 55
S S S )+ 0 0] 9

for material 2, where

no=(bfa) r/dn)', 2= (b)) Vrdy/b?), 7 =n(0— o)
ry = ((a/b)rdn/B)', ry = (/b rfdy)', @ =n(0+ o)

The explicit solutions presented in Eqs. (54) and (55) are infinite series with only one summation. The
solutions in Egs. (54) and (55) for £ = 0 and j = 1 represent the Green’s function of a composite wedge with
infinite length which is discussed in the Section 3. All the other terms are superimposed to satisfy the
circular boundary conditions along » = a and r = b. The locations of image singularities along the radial
direction can be determined and summarized as follows:

L {dm(a/b)z(“l), (a/b)*“ V(12 /d,) for r<a
du(b)a)"™,  (bja)(b?/d,)  forr>b

(56)

m=12 and £=0,1,2,...,00 (57)

For the case that an annular composite wedge subjected to a screw dislocation with Burger’s vector b, at
(r,0) = (d,«) in material 1 with traction free boundaries. The full-field solution 1y, is

) e S S Y [ (05067~ T 6) K 1 6) I (1, 6] (58)

T = (”7“’)) S SV (56) () (59)
for material 2, where
{V] = ((b/a)%r/d)n> = ((b/a)2(€+1)rd/b2)n7 ¢ :n(@—o{), (60)
ry=((a/p) " r/d)",  ra=((a/b)*rd/B?)", ¢* =n(0+a).

The full-field solutions of displacement w and stress component t,, are summarized in Appendix D.
5.2. Fixed—fixed—free—free boundary condition

Consider an annular composite wedge with two fixed and two free boundaries subjected to a concen-
trated force located at » = d and 0 = «. For the case that the boundary is fixed along the radial edges and is
free along the circular segments, the boundary conditions are

{w(r,O)zw(r,ﬁ)zO fora<r<b

t(a,0) = 1.(h,0) = 0 for 0<0< f (61)

Follow a similar procedure as indicated in the previous case, the full-filed solutions are presented as follows.
For material 1, the full-filed solution is
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= S S (00 )~ O (1,07 + kO (16 ) kO (9] (62)

00 4
"Hzfz -
U = 2 207 07) — 67(4")] (63)
where O is the same as that presented in Eq. (15) and

{ "= ((b/a)”‘r/d)”, Py = ((b/a>2<“1>rd/b2)”, ¢ = n(0— a)

o= (i)' = (@) ¢ =ato+3) 0

5.3. Free—free—fixed—free boundary condition

An annular composite wedge subjected to a concentrated force is fixed along one radial edge » = @ and
the other three boundaries are traction free; the boundary conditions are

79.(r,0) = 19, (r, f) =0 for a<r<b (65)
w(a,0) =1.(b,0) =0 for0<O<p
The full-filed solutions of shear stresses are summarized as follows
00 4
n z — — —
T = 27{ ;2 DN O7(67) + 070 ¢7) — kO, ¢7) — kO 47)] (66)
=1
) nu, f- > < ( 1
T, = z YO (r )+ O (1, P 67
= e S S0 (47404 )

The functions 7|, 7, 74, 74, ¢ and ¢~ are defined in Eq. (64).

5.4. Fixed—fixed—free—fixed boundary condition

Consider an annular composite wedge with three fixed and one free boundaries subjected to a screw
dislocation located at » = d and 0 = « in material 1. The boundary is free along one radial edge » = a and
the other three boundaries are fixed. The boundary conditions are

w(r,0) =w(r,f)=0 fora<r<b (68)

7.(a,0) =w(b,0) =0 for 0<O0<Lp
Follow a similar procedure as indicated in the previous case, the full-filed solutions are presented as follows.
For material 1, the full-filed solution is

00 4
o =2 ;ézz DT (ry, ) + T (ry, 7)) — kT (ry, 7)) — kT (r, 7)) (69)

For material 2, the solution is
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00 4
(@) _ _Mutbb: L P
Ty, = -1 I (ri,¢ ) +T (r;,¢ 70
¥ = iy 2 2V )+ () (70)

6. Image forces exerted on screw dislocations

The full-field stress distributions of composite wedges subjected to screw dislocations are analyzed in
detail in previous sections. The image forces exerted on screw dislocations will be investigated in this
section. According to the Peach—Koehler equation, the image force exerted on the screw dislocation can be
obtained from the stress filed at the location of the dislocation minus the self-stresses of the dislocation in
an infinite plane. In polar coordinate, the relations between image forces and stress fields are

E. -1,
¥ — Joz bz 71
=) )
where F, and Fy denote the image force exerted on a screw dislocation along the radial and circumferential
directions, respectively, and ), = 19, — tj_, 7. = 1, — 7’ in which tj_and 7', are the self-stresses of the screw
dislocation. The self-stresses of a screw dislocation in an infinite plane are

oo —ub, r—dcos(0 —a)
= 2m 2 —2rdcos(0 — a) + d>

(72a)

ub. dsin(0 — o)
s _ 2
=T o 2~ 2d cos(0 —a) +d? (720)

The image forces exerted on the dislocation for different boundary conditions are summarized as follows.
6.1. Image forces exerted on screw dislocations for infinite composite wedges
6.1.1. Free—free boundary condition

From Egs. (16), (71) and (72), the image forces exerted on a screw dislocation located at (d, o) for the
traction free boundary condition are

bz
FO(d, ) = _Z;Idz (73a)
(g, o) = _ybin (cosna i sin no (73b)
" 4Ard \ sinno cos no.
for material 1, and
bz
(d ) = -2 (74a)
b*n [ cosna sin no
F® _ Kb k 4
) (d) 4nd \ sinna + cos na (745)

for material 2. It is shown in Egs. (73a) and (74a) that the radial image force F!) in material 1 is inde-
pendent on the apex angle and circumferential location o of the screw d1s10cat10n Both image forces, FV

and Fe , are proportlonal to 1/d. 1t is interesting to note that the image force £V is always negative in the
wedge, the image force F is zero along o = (tan ! \/T> /nfork >0 (ie. yu; > u,). However, the image
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force FO(1> is non-zero in the wedge for the case £ < 0. Similar features occur for the screw dislocation lo-
cated in material 2.

6.1.2. Fixed—fixed boundary condition
From Egs. (31), (71) and (72), the image forces exerted on a screw dislocation located at (d, o) for the
fixed boundary condition are

(1) ﬂ1b§
F () =212 (an(1 i~ 1) (752)
FO (dyo) = np,b? ( cosno i sin na (75b)
0N 4nd \ sinno COS no,

for material 1, and

2
@ _ b
Fod o) = =g (1= 201+ 4)) (76a)
£ (dyo) = — np,b?* ( cosno . sin no 6
0 " Ard \ sinno Cos no

for material 2. It is quite different from traction free boundary that the radial image force F, for the fixed
boundary condition is dependent on the apex angle and the material constant of material 2. The image
force £V is zero in the situation that 2n(1 — k) = 1 for k > 0 (i.e. yt; > ). However, the image force FV is
non-zero in the wedge for the case £ < 0.

6.2. Image forces exerted on screw dislocations for composite wedges with finite radius

6.2.1. Free—free—free boundary condition
From Eqgs. (37), (B.2), (71) and (72), the image forces exerted on screw dislocations for traction free
boundary condition are

2nd |27 ((d/b)* = 1)((d/b)" — 2(d/b)* cos 2na + 1)
nk(d/b)”" (1 — (d/b)*")(1 — cos 2na)

((d/b)" + 1)((d/b)*" + 2(d/b)™ cos 2no + 1)

b [1 n(d /b)Y ((d/b)™" + 1)(1 — cos 2na)

(77a)

FO(d, o) = b2 | Lcosma (d/b)"" sin 2nc K sinnz
t 2nd 2 sinne  (d/b)*" —2(d/b)*" cos2no+1 2 cosna

k(d/b)*" sin 2na
(d/b)*" +2(d/b)*" cos 2nu + 1

(77b)

for material 1, and
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FO(d.a) = wb? | 1 n(d/b)”((d/b)” + 1)(1 — cos 2n2)
T 2nd |2 ((d/b)™" —1)((d/b)* — 2(d/b)* cos 2na + 1)
_ nk(d/b)*"(1 = (d/b)™")(1 — cos 2na)
((d/b)" + 1)((d/b)*" + 2(d/b)™ cos 2no + 1)
.  ng,b? | 1 cosna (d/b)*" sin 2na k sin na
Fy'(d,2) = 2nd [5 sinne (d/b)* — 2(d/b)” cos2nu+ 1 2 cosna
k(d/b)*" sin 2na

(d/b)*" 4 2(d/b)*" cos 2na + 1

(78a)

(78b)

for material 2. The first term in Eqgs. (77a) and (78a) represents the image force induced by the radial edges
while the second and third terms in (77a) and (78a) are image forces induced by the circular boundary r = b.

6.2.2. Fixed—fixed—free boundary condition

From Egs. (45), (B.6), (71) and (72), the image forces exerted on screw dislocations with two fixed and

one traction free boundary conditions are

1 n(d/b)™((3(d/b)™ — 1) cos 2no — 2(d /b)*" + (d/b)* — 1)

2
FO(d,0) = ’;‘ZZ [n(l k) -
T

2 ((d/b)*" — 1)((d/b)*" — 2(d /)™ cos 2na + 1)

N nk(d/b)*" ((3(d/b)" + 1) cos 2no + 2(d/b)" + (d/b)™ + 1)
((d/b)”" + 1)((d/b)*" + 2(d /)" cos 2na + 1)

FO(d, 2) = nb? | 1 cosno (d/b)*" sin 2na k sinno
¢ 2nd | 2sinne (d/b)* — 2(d/b)* cos2nu+1 2 cosna
k(d/b)*" sin 2na
(d/b)*" +2(d/b)*" cos 2na + 1

for material 1, and

1 n(d/b)"((3(d/b)™ — 1) cos2no — 2(d/b)*" + (d/b)™ — 1)

b2
F(Z) (d, O{) — W0

S n(l+k)—=+

2 ((d/b)*" — 1)((d/b)*™ — 2(d /)™ cos 2na + 1)

nk(d/b)*" ((3(d/b)" + 1) cos 2no + 2(d /)" + (d/b)™ + 1)
((d/b)"" + 1)((d/b)*" + 2(d /)" cos 2na + 1)

Fy?(d, o)

_nmipb2 |1 cosna (d/b)*" sin 2na k sinno
2nd 2 sinne  (d/b)*" —2(d/b)" cos2no+1 2 cosna

k(d/b)*" sin 2na
(d/b)*" 4 2(d/b)*" cos 2na + 1

for material 2.

(79a)

(79b)

(80a)

(80b)
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6.3. Image force exerted on screw dislocations for annular composite wedges

6.3.1. Free—free—free—free boundary condition
From Egs. (58), (D.2), (71) and (72), the image forces exerted on screw dislocations for annular com-
posite wedges with traction free boundary condition can be expressed as

(1) _ b2 ”H1b2 c -
FV(d, a) = — 1 g ;]Z “(r7,0) = I (r;, 2n0) + kI (r;,0) — kI (r;, 2n0)]  (81a)

: 00 4
) _ b’ (cosna  sinno np, b? VTl e
Fy'(d o) = ind (sinnoc kcosnoc) + E E (=1)[©@ (r},2n0) — kO (r;, 2n%)] (81b)

for material 1, and

) 1Lb? ’l,uzb2 Sh% - +
Fr (d’a):_4rcd 2nd ;; r,, _F (;{,,Zn—Znoc)—kF (rj,())
+ kI (r}, 21 — 2n01) | (82a)
F2(d,0) = tab? (cosna +k sin 12 + it i i(—l)'/ [0 (r;, 21 — 2n%) — kO™ (r}, 21 — 2nr)|
005 4nd \ sinno | cos no 2nd S 4 a g

(82b)
for material 2, where
r=(/a)"", r=((b/a)’(d/b))", s = (/b)Y r=((a/b)*(d/b))" (83)

The second term with summation represented in Eqs. (81) and (82) are image forces exerted on screw
dislocations by circular boundaries at » = ¢ and r = b.

6.3.2. Fixed—fixed—free—fixed boundary condition
From Egs. (69), (D.6), (71) and (72), the image forces exerted on screw dislocations for annular com-
posite wedges with three fixed and one traction free boundary conditions are

FO(d, o) = “lbz( 2n(l — k) — 1) — bz Z Z D™ (7,0) + T (), 2n2)
d 2nd 4= < 7 P
— kI'*(r;,0) — kI'" (1}, Zna)] (84a)

: 00 4
() _mybl (cosna  sinna\  npb? N e i
Fyl'(d,o) = And ( P +kcosnoc> E E (=)™ [0 (r;,2n%) + kO* (1}, 2n0) | (84b)

for material 1, and

2 00 4
F2(d, o) = 41;(2 (1+4)—1) ”“Zdzzz DI (r,0) + I (r;, 27 — 2n01)
(=

+ kI (r;,0) + kI (r;, 2m — 2n01) | (85a)

b? cosno . sinno n,u P SN &
FO(d, ) =27 _ k 2 ™[0 (), 2 — 2n9) + kO (1, 27 — 2
0 (d,9) 4nd sinnoc+ cos no. 2nd ;; (rj, 2m = 2mar) + (rjy2m — 2na)]

(85b)
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for material 2, where

n= (/)" = (0/a) /ey, = ((a/0)" @b rs = (a/b)"" (86)
The second term with summation presented in Egs. (84) and (85) are image forces exerted on screw dis-
locations by circular boundaries at » = a and r = b.

From the available solutions of full-field stresses presented in this study, it is easy to construct the image
forces exerted on screw dislocations in analytical forms. Although we only present the results for two
different boundary conditions for each case in this section, the image forces exerted on screw dislocations
for other boundary conditions can be obtained without difficulty.

7. Numerical results of full-field stress distributions and image forces

The analytical full-field solutions of shear stresses for various boundary conditions are explicitly pre-
sented in Section 4 for composite sharp wedges with finite radius and in Section 5 for composite annular
wedges. The solutions are functions of wedge angle f3, finite radii « and b, material constants u; and u,, and
the location of the concentrated load (or screw dislocation) (d,«). The full-field stress distributions for
composite wedges with a finite radius subjected to concentrated loads are calculated and shown in Figs. 8-10

r/b

1.0

r/b

0.0 0.2 04 0.6 0.8 1.0
(b) free

Fig. 8. (a) The full-field distribution of shear stress t,, for a composite sharp wedge with an apex angle = 120° subjected to self-
equilibrium forces located at (0.45,0°) and (0.75,45°). (b) The full-field distribution of shear stress 1y, for a composite sharp wedge
with an apex angle § = 120° subjected to self-equilibrium forces located at (0.45,0°) and (0.7b,45°).



R.-L. Lin, C.-C. Ma | International Journal of Solids and Structures 41 (2004) 6041-6080 6063

for wedge angles § = 120° and the ratio of shear modulus for materials 1 and 2 is u, /i, = 1/2. Figs. 8-10
present the shear stresses for three different boundary conditions. It is indicated in these figures that the
traction free boundary condition along the two edges for 75, and along the circular segment for t,, are
satisfied. The continuity condition along the interface for stress ty, is satisfied while 7, is discontinuous along
the interface. Because f§ = 120° < 180°, no stress singularities near the apex of the composite wedge are
found for Figs. 8-10. The full-field distributions of shear stresses for composite wedges with a finite radius
subjected to a screw dislocation is shown in Fig. 11 for a wedge angle § = 120°. The boundary conditions for
Fig. 11 are fixed along two edges and traction free along the circular segment, and g, /u, = 1/2. Figs. 12-14
present the shear stresses for a composite wedge with largest apex angle f = 360° which is the problem of a
composite disk with an interface crack. In this case, the apex of the composite wedge is equivalent to an
interface crack tip and the well known square root stress singularities in the crack tip are clearly presented in
these figures. Figs. 15-17 are stress distributions of composite annular wedges subjected to concentrated
loads for three different boundary conditions indicated in Egs. (53), (61) and (65), respectively. The apex
angle and radial length of the composite annular wedge is § = 120° and a = 0.5b. The ratio of shear modulus
for materials 1 and 2 is u,/u, = 2. It is worthy to note that the stresses distributions satisfy all the corre-
sponding boundary and continuity conditions. Figs. 18 and 19 are stress distributions of composite annular

7,,b
A0 o1 ,'I z
08 02 X 005
(}% ,I i fixed
03 J 00
05 /
o® 10 /

’
free ob ! -1.2\ \
’ 8 - -0.2

r/b

(b) ' free

Fig. 9. (a) The full-field distribution of shear stress t,, for a composite sharp wedge with an apex angle f = 120° subjected to a
concentrated force located at (0.5b,45°). (b) The full-field distribution of shear stress 7, for a composite sharp wedge with an apex
angle f = 120° subjected to a concentrated force located at (0.55,45°).
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Fig. 10. (a) The full-field distribution of shear stress 7, for a composite sharp wedge with an apex angle f = 120° subjected to a
concentrated force located at (0.5b,45°). (b) The full-field distribution of shear stress 7y, for a composite sharp wedge with an apex
angle f§ = 120° subjected to a concentrated force located at (0.5b,45°).

wedges subjected to a screw dislocation for two different boundary conditions. The apex angle and radial
length of the composite annular wedge are f = 120° and a = 0.4b. The ratio of shear modulus for materials 1
and 2 is y, /u, = 2. It is worthy to note that the stresses distributions satisfy all the corresponding boundary
and continuity conditions. The theoretical solutions of image forces F, and Fj exerted on screw dislocations
are presented in Egs. (73)—(76) for infinite wedge, in Egs. (77)—(80) for wedges with finite radius and in Egs.
(81)—(86) for annular wedges. The numerical results for composite wedges with finite radius are shown in
Figs. 20 and 21 for f = 120°. It is found that there exist an equilibrium point (i.e. F,. = Fj = 0) for the traction
free boundary condition and the location for the equilibrium point in material 1 is indicated in Fig. 20.
However, no equilibrium point is found for the case that fixed boundaries along two radial edges and free
along the circular segment as shown in Fig. 21. The results of annular wedge with traction free boundary
condition and apex angle = 120° are shown in Fig. 22. The location of the equilibrium point is also
indicated in Fig. 22 which has only a slight difference to that indicated in Fig. 20.

8. Conclusions

In this study, a complete investigation on concentrated anti-plane forces and screw dislocations applied
in isotopic composite annular wedges is presented. The explicit closed-form solutions for displacement
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r/b

10

(b)

Fig. 11. (a) The full-field distribution of shear stress t,. for a composite sharp wedge with an apex angle § = 120° subjected to a screw
dislocation located at (0.5b,45°). (b) The full-field distribution of shear stress 7, for a composite sharp wedge with an apex angle
S = 120° subjected to a screw dislocation located at (0.55,45°).

and shear stresses are obtained by using the Mellin transform technique and the image method.
Many possible boundary conditions on radial edges and circular segments are taken into account. The
special case of interface crack problem, which is intersected for many applications, is also presented
in detail. It is worthy to note that even for the complicated geometrical configuration as the composite
annular wedge, the full-field solution consists of only one infinite summation. Each term presented in
the solution is only a combination of simple trigonometric functions. The explicit solutions with simple
forms of displacement and stresses presented in this study are very easy to use for numerical investigations
and theoretical analysis. The stress distributions for composite wedges with a finite radius and annular
wedges are discussed from numerical calculations. The image forces exerted on screw dislocations are
derived and the equilibrium points are identified base on the numerical calculations for special boundary
conditions.
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Fig. 12. (a) The full-field distribution of shear stress t,. for a composite sharp wedge with an interface crack subjected to self-equi-
librium forces located at (0.55,0°) and (0.6b, 150°). (b) The full-field distribution of shear stress 4, for a composite sharp wedge with
an interface crack subjected to self-equilibrium forces located at (0.56,0°) and (0.6b, 150°).
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r/b
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Fig. 13. (a) The full-field distribution of shear stress .. for a composite sharp wedge with an interface crack subjected to a concentrated
force located at (0.5b,150°). (b) The full-field distribution of shear stress 7y, for a composite sharp wedge with an interface crack
subjected to a concentrated force located at (0.55,150°).
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free
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Fig. 14. (a) The full-field distribution of shear stress 7,. for a composite sharp wedge with an interface crack subjected to a concentrated
force located at (0.5b,150°). (b) The full-field distribution of shear stress 74, for a composite sharp wedge with an interface crack
subjected to a concentrated force located at (0.55,150°).
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Fig. 15. (a) The full-field distribution of shear stress 7,, for a composite annular wedge with an apex angle f# = 120° and a = 0.5

subjected to self-equilibrium forces located at (b,45°) and (0.7b,0°). (b) The full-field distribution of shear stress 7y, for a composite
annular wedge with an apex angle f = 120° and a = 0.5b subjected to self-equilibrium forces located at (b,45°) and (0.75,0°).

Appendix A. The full-field solutions w(r,0) and rt,.(r,0) of composite sharp wedges with finite radius
(concentrated loads)

A.1. Free—free—free boundary condition

W0 = L S (/) (0 = 1))+ @0+ ) + 2 ()0 = 3)

+kQ((r/dy)", n(0 + ) + Q ((rd, /b)), 1(0 — o)) + Q ((rd,, /*)", n(0 + o))

+kQ((rd,/bY)" ,1n(0 — ) + kQF ((rd,, /b*)", (0 + )] (A.1)
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Fig. 16. (a) The full-field distribution of shear stress 7,. for a composite annular wedge with an apex angle f = 120° and a = 0.5
subjected to a concentrated force located at (0.85,45°). (b) The full-field distribution of shear stress 4. for a composite annular wedge
with an apex angle f# = 120° and a = 0.5b subjected to a concentrated force located at (0.85,45°).

) = 2 S () (0 — ) + T (/) 10+ 3,)) + KT (1) (0 — 1))

& 2nr
m=1

(0 = o)) + I ((rd /)", n(0 + 01,,))

+ kI ((r/dn)" n(0 + o)) + 1—‘7((l”dm/b2)”7 n(0
kY ((rdy /D7), 1(0 = o)) + KT ((rdy /07)" (0 + 20,) )] (A2)
2 _ 27-[ m + ™ ; m+1 r/d ) ( — “m)) + ‘Qi((”/dm)n,n(@ i “m))
(A3)

Q ((rdy/b*)",n(0 — o)) + Q ((rd/B*)", n(0 + 01,))]
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(b) free

Fig. 17. (a) The full-field distribution of shear stress 7,. for a composite annular wedge with an apex angle f = 120° and a = 0.5b
subjected to a concentrated force located at (0.85,45°). (b) The full-field distribution of shear stress 7y, for a composite annular wedge
with an apex angle = 120° and a = 0.5b subjected to a concentrated force located at (0.8b,45°).

2) niulfz - 1yt - r n n _ “((r n n
= i g U (/) (0= ) T (/) (0 + )
+ I ((rdy/b*)" (0 — ) + T ((rd,,/B*)",1n(0 + 0t,))] (A4)

A.2. Free—free—fixed boundary condition

W) — Sz
4mp,

+kQ((r/d)" n(0 + ) — @ ((rd /)", n(0 — 2)) — Q" ((rd /b?)", n(0 + 1))
— kQ((rd /)" n(0 — ) — kQ* ((rd /B?)", n(0 + 2))] (A.5)

(27 ((r/d)",n(0 — @) + Q" ((r/d)",n(0 + @) + kQ" ((r/d)",n(0 — %))
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free

(b)
Fig. 18. (a) The full-field distribution of shear stress . for a composite annular wedge with an apex angle f = 120° and a = 0.4b
subjected to a screw dislocation located at (0.65,45°). (b) The full-field distribution of shear stress 7y, for a composite annular wedge

with an apex angle # = 120° and a = 0.4b subjected to a screw dislocation located at (0.65,45°).

v = ;%[F‘((V/d)”,n(O — )+ I ((r/d)",n(0 + 2)) + kI ((r/d)", n(0 — o))
+AI((r/d)"n(0 + @) = T ((rd /07)",0(0 — ) = I ((rd/b*)", (0 + 1))

—kTH((rd DY) (0 — 0)) — KT ((rd /52", (0 + )] (A.6)
) Ve - n - n - 2
& = Tl T 10) [Q((r/d)",n(0 — o)) + Q" ((r/d)",n(0 + @) — Q" ((rd /b7)",n(0 — )
(A7)

—Q ((rd /)" ,n(0 + a))]
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(b)

Fig. 19. (a) The full-field distribution of shear stress 7, for a composite annular wedge with an apex angle f = 120° and a = 0.4b
subjected to a screw dislocation located at (0.65,45°). (b) The full-field distribution of shear stress 7y, for a composite annular wedge
with an apex angle = 120° and a = 0.4b subjected to a screw dislocation located at (0.6b,45°).

‘c<2):L2fZ’r"n — o “((r/d)",n o)) — I ((rd/b*)", n(0 — «
2 = e U (C/d) (0 = @) + T ((r/d)" (O + @) = I ((rd/57)" (6 — a))

— T ((rd/b*)",n(0 + o))] (A.8)

A.3. Fixed—fixed—free boundary condition

wl) = %ﬂl [Q((r/d)",n(0 — o)) = Q((r/d)",n(0 + o)) — kQ((r/d)",n(0 — )
QT ((r)d)" n(0+ ) + Q7 ((rd /B2)", (0 — ) — Q@ ((rd /B*)", n(0 + )

— kQ((rd /b*)",n(0 — &) + kQF ((rd /b*)", n(0 + «))] (A.9)



6074 R.-L. Lin, C.-C. Ma | International Journal of Solids and Structures 41 (2004) 6041-6080

d/b=0.611
a=373

Equilibrium point

(a) ' ' " free

4 r/b

10

(b)

Fig. 20. (a) Image force F, exerted on a screw dislocation in a composite wedge with apex angle § = 120° and finite radius » = b. (b)
Image force Fj exerted on a screw dislocation in a composite wedge with apex angle § = 120° and finite radius » = b.

0 = 2= (0 (/) (0 — ) — T (/)" (0 + 2)) — kT ((#/d)" (0 — )

T =
& 2nr

kI ((r/d)" n(0 + ) + T ((rd/6%)",n(0 — 0)) = I ((rd /b?)", (0 + 21))

— kT ((rd/D*)",0(0 — o)) + kT ((rd /D*)", n(0 + )] (A.10)
(Z)ZLfr "n0—a)—Q ((r/d)",n o “((rd/b*)",n(0 — «
2 + 1) [Q((r/d)",n(0 — 0)) — Q" ((r/d)",n(0 + 0)) + Q" ((rd/b*)", n(0 — =)
(A.11)

—Q ((rd /D", n(0 + )]
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Fig. 21. (a) Image force F, exerted on a screw dislocation in a composite wedge with apex angle = 120° and finite radius » = b. (b)

Image force Fj exerted on a screw dislocation in a composite wedge with apex angle f = 120°and finite radius r = b.

niyJj-
L

= 2+ r((r/d)",n(0 = a)) = T~ ((r/d)",n(0 + o)) + T~ ((rd /b*)", n(0 — 2))
— I ((rd/b*)",n(0 + @))]

A.4. Fixed—fixed—fixed boundary condition
W = Sz
dmp,

(@7 ((r/d)",n(0 — @) = Q" ((r/d)", n(0 + @) — kQ" ((r/d)", n(0 — 2))

+RQ(r/d), (0 + 2) — @ ((d/B)",n(0 — o)) + @ ((rd /)", (0 + 7))
kQ" (rd/B)', (0 — 7)) — KQ" ((rd[57)",n(0 + )]

(A.12)

(A.13)
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Fig. 22. (a) Image force F, exerted on a screw dislocation in an annular wedge with apex angle # = 120°. (b) Image force F; exerted on a
screw dislocation in an annular wedge with apex angle = 120°.
n.fz — n — n n
)= 3o L (/) n(0 =) = I ((r/d)", n(0 + ) = kI ((r/d)", n(0 — o))
+ I ((r/d)",n(0 + 0)) = T~ ((rd /b?)",n(0 — 2)) + I ((rd /b*)",n(0 + )
(A.14)

+ kI ((rd/b?)",n(0 — @) — kI ((rd /b*)", n(0 + «))]
[Q((r/d)",n(0 — ) — Q" ((r/d)",n(0 + 0)) — Q" ((rd/b?)", n(0 — @)
(A.15)

o___ )
27 (py + 1)
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Appendix B. The full-field solutions w(r, #) and t,.(r, ) of composite sharp wedges with finite radius (screw

dislocations)

B.1. Free—free—free boundary condition

wl) = ’2—1; (= ((r/d)",n(0 — ) — P~ ((r/d)",n(0 + 2)) + kP*((r/d)",n(0 — o))
— kP ((r/d)",n(0+ @) — ¥~ ((rd /B*)", n(0 — ) + ¥~ ((rd/b*)",n(0 + )

— kP ((rd/*)", n(0 — a)) + kP ((rd /B*)", n(0 + o))]

o) =" (r/d) n(0 7)) — O ((r/d)",n(0 + ) KO (r/d)", (0 — )

+ kO ((r/d)",n(0 + o)) — O ((rd /b*)",n(0 — ) + O ((rd /b*)",n(0 + o))
+ kO ((rd /6", n(0 — 0)) — kO ((rd /B*)" (0 + a))]

wi?) = lez[‘l”_((r/d)"v"(@ —a)) = ¥V ((r/d)",n(0+ o)) — ¥ ((rd/b*)",n(0 — o))
oy + )

+ P ((rd /)" n(0 + a))]

o = IR0 (r/d)"n(0 = ) — O ((r/d) a0+ 2)) = O ((rd /8" .n(0 — )

+ 0 ((rd/b*)",n(0 + a))]

B.2. Fixed—fixed—free boundary condition

wl) = _2—17;2 [P ((r/d)",n(0 — o) + ¥ ((r/d)",n(0 + &) — kP ((r/d)",n(0 — )
— kP ((r/d)",n(0 +a)) — ¥ ((rd/b*)",n(0 — &) — ¥ ((rd/b*)",n(0 + o))

+ kP ((rd/bY)",0(0 — o)) + kP ((rd /b*)", n(0 + «))]

) = nﬁf (@ ((r/d)",n(0 — o)) + O ((r/d)",n(0 + ) + kO™ ((r/d)", n(0 — o))
+kOF((r/d)",n(0 + @) — O ((rd /b*)",n(0 — o)) — O~ ((rd /b*)" , n(0 + )
— kO ((rd/p*)",n(0 — 0)) — kO ((rd /b*)",n(0 + @))]

w(z)zi_ulbz “((r/d)",n(0 — « “((r/d)",n @) — ¥ ((rd/b*)",n(0 — o
”(/11+M2)[lp ((r/d)",n(0 —a)) + ¥~ ((r/d)",n(0 + o)) = ¥~ ((rd /b7)",n(0 — o))

— P ((rd/b?)", n(0 + 2))]

o = IR0 (r/d)"n(0 = ) + O ((r/d) a0+ 2)) = O ((rd /8" .n(0 — )

— O ((rd/b?)",n(0 + )]

(B.2)

(B.6)
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Appendix C. The full-field solutions w(r, 0) and z,.(r, 0) of composite annular wedge (concentrated loads)

C.1. Free—free—free—free boundary condition

o Loy
v :477:,ulz:Z

2
=0 j=1 ml

2mr =1 mel
@ /. Shulv +1
" 2+ ) ; ; 21(71) @ (rj @) + 2 (rj 7))

W= LSS0 (1 6) @ (1, 8) KO (1 67) 4 K2 ()

T£z1> = ;ﬁ Z Z[ri(rj’ ¢7) - Fi(rjaqyr) _kFJr(rj’ ¢7) +kr+(rj7¢+)]

0 4
o = 2 Z Z YT (o) + T (ryy 7)) + KT (ryy ™) + KT (1, 7))

4

@ _— SC “J ' ¢7) +
w ) + Q" ( 7¢ )
:ul + /“t2 =0 j= 1 ( ] j }

1" Ry, ¢7) + Q7 () +KQT(rjy b7) + K2 (r, 0]

(C.1)

(C.2)

(C.10)

(C.11)
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Appendix D. The full-field solutions w(r, 0) and z,.(r, 6) of composite annular wedge (screw dislocations)

D.1. Free—free—free—free boundary condition

wl) = ”—n S S ) P 67 R ) — R4 (D.1)
=0 j=1
) = b i D (1Y 7O (1 ¢7) = O (1 8) ~ kO 1 67) + k0" (1 67) (D-2)
) b 004717r,—,—r,+
W = e ) 2 27 = ¥ 0 (D3)
@) = IS S 1O 97) ~ 0 (1 47) (D.4)

wit) = b—; 2 ji;(—l)”j[?"(m ¢)+ (1 ¢7) — kP (ry 7)) — K (ry, 7)) (D.5)
) = 2 fj Z( DO (1, @) + O (1, ") + kO™ (1), ¢7) + kO™ (1, ")) (D.6)

R Ty i jil<—1>”f[vf<r,,¢> (13" (D.7)
D S S )10 () + 0 (1) (D)
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