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Abstract

By using the Mellin transform technique in conjunction with the image method, the two-dimensional full-field

solutions of dissimilar isotropic composite annular wedges subjected to anti-plane concentrated forces and screw dis-

locations are presented in explicit forms. The composite wedges consist of two materials that have equal apex angle and

are bonded together along an interface. The explicit full-field solutions are presented in series forms for combinations of

traction and displacement boundary conditions. For the special case of composite sharp wedges with finite radius or

infinite extent, the solutions with functional forms are obtained and only consist of simple trigonometric functions.

Explicit solutions of the stress intensity factors are obtained for a semi-infinite interface crack and a circular composite

disk with an interface crack. With the aid of the Peach–Koehler equation, the explicit forms of the image forces exerted

on screw dislocations are easily derived from the full-field solutions of stresses. Numerical results of full-field stress

distributions and image forces exerted on screw dislocations are presented and discussed in detail.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The stress analysis for the wedge problem with infinite length has been investigated by many authors.

Some authors devoted efforts on deriving the full-field stress distribution in the wedge and others investigate

the stress singularities near the apex of the wedge. The isotropic wedge problem was first considered by
Tranter (1948) by using the Mellin transform in conjunction with the Airy stress function representation of

plane elasticity. Williams (1952) obtained the solution of dissimilar materials with a semi-infinite interface

crack and observed the stress oscillation near the crack tip. Chou (1965) investigated the screw dislocation
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near a shape wedge boundary by means of the conformal mapping technique. In his study, the method of

image for anti-plane single wedge and image force on screw dislocation was discussed in detail. Bogy (1971,

1972) used complex function representation of the generalize Mellin transform to obtain the solution of the

plane problem of dissimilar wedge and single wedge with infinite extent. Ma and Hour (1989) investigated
the problem of dissimilar anisotropic wedge subjected to anti-plane deformation and discussed the stress

singularity near the apex of wedge. Ting (1984, 1985) discussed the paradox which existed in the elementary

solution of an elastic wedge. Zhang et al. (1995) studied the problem for the interaction of an edge dis-

location with a wedge crack. Kargarnovin et al. (1997) solved the problem of an isotropic wedge with finite

radius subjected to anti-plane surface traction. The solution of anisotropic single wedge was obtained by

Shahani (1999). However, both of the solutions were represented with an infinite series form. Kargarnovin

(2000) studied the dissimilar finite wedge under anti-plane deformation and obtained only the near-tip field

solution. Wang et al. (1986) investigated the stress intensity factor for the rigid line inclusion under anti-
plane shear loading. He and Hutchinson (1989a,b) analyzed several problems which provided insight and

quantitative information on the role an interface between dissimilar elastic materials plays when ap-

proached by a crack. The condition that a crack impinging on an interface will pass through the interface or

be deflected into the interface was discussed in detail.

For engineering applications, layer and wedge configurations are two problems that are commonly

analyzed in the literature. The use of the image method in solving two-dimensional anti-plane problems is

well-known. The anti-plane full-field solution of a single layer can be obtained by using an infinite array of

image singularities to account for the boundary conditions of the two free or fixed surfaces. The results are
identical to the work by using the method of Fourier transform in conjunction with series expansion. Chou

(1966) used the technique of image method to construct the full-field solution of three phase lamellar

structure subjected to a screw dislocation. The anisotropic case was obtained by Lin and Chou (1975). Chu

(1982) used the conformal mapping technique to construct the closed-form solution of two phase isotropic

thin film subjected to screw dislocation. The image method plays the essential role in these works. The

method of image has been successfully extended to solve the problem of multilayered media with anti-plane

shear deformation. By using a linear coordinate transformation and the Fourier transform technique, an

effective analytical methodology was developed by Lin and Ma (2000) to obtain explicit analytical solutions
for an anisotropic multilayered medium with n layers subjected to an anti-plane loading or a screw dis-

location in an arbitrary layer. However, the image method for wedge problem under anti-plane defor-

mation is restricted for special apex angles (Chou, 1965).

In this study, the finite annular dissimilar composite wedge with equal apex angle subjected to anti-plane

concentrated loadings and screw dislocations is investigated by analytical methods. The boundary condi-

tions prescribed on radial edges, either tractions or displacements, are discussed in detail. In each problem,

different boundary conditions prescribed on the circular segments are presented with the aid of the image

method. The analytical solutions of composite sharp wedges with infinite length along the radial direction
are first solved by a straightforward application of the Mellin transform, and the solutions are expressed in

simple explicit functional forms. Based on the image method, the full-field solutions for composite sharp

wedges with a finite radius are also presented in explicit functional forms. The analytical solution of the

stress intensity factor of the circular composite disk with an interface crack is also obtained. In order to

solve the finite annular dissimilar wedge problem, the image method is used to satisfy the boundary con-

ditions on two circular segments based on the available solutions with functional forms of the infinite wedge

problem. Base on the complete analytical solutions of stress fields for the wedge problem, the image forces

exerted on screw dislocations are given in explicit forms with the aid of the Peach–Koehler equation.
Numerical calculations of stress distributions are provided for traction or displacement boundary condi-

tions. The full-field stress distributions and image forces exerted on screw dislocations for composite sharp

wedge with finite radius and finite annular dissimilar composite wedge are studied in detail from numerical

investigations.
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2. Basic equations and general solutions

Consider an isotropic composite sharp wedge with infinite length along the radial direction and with an

apex angle b (06 b6 2p) as shown in Fig. 1. Let 1, 2 denote the open two-dimensional regions which
occupies the same apex angle b=2. The composite wedge is perfectly bonded together along a common edge.

For the anti-plane shear deformation, the non-vanishing displacement component is along the z-axis,
wðr; hÞ, which is a function of in-plane coordinates r and h. In the absence of body forces, the equilibrium

equation for a homogeneous isotropic material in terms of displacement is given by
Fig
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r
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The non-vanishing shear stresses are
srzðr; hÞ ¼ l
ow
or

; shzðr; hÞ ¼
l
r
ow
oh
where l denotes the shear modulus of an isotropic material. In addition, we shall require the stress fields to

satisfy the regularity conditions
srz;shz ¼ Oðr�1þdÞ as r ! 1 for d > 0 ð2Þ
Mellin transform method is convenient for solving the problems in polar coordinate. Let the Mellin

transform of a function f ðrÞ be denoted by f̂ ðsÞ, then
f̂ ðsÞ ¼ M ½f ðrÞ; s� ¼
Z 1

0

f ðrÞrs�1 dr; f ðrÞ ¼ M�1½f̂ ðsÞ; r� ¼ 1

2pi

Z cþi1

c�i1
f̂ ðsÞr�s ds
where s is a complex transform parameter. The Mellin transform of wðr; hÞ, rsrzðr; hÞ and rshzðr; hÞ in the

transform domain are given by
ŵðs; hÞ ¼
Z 1

0

wðr; hÞrs�1 dr ð3aÞ

ŝrzðs; hÞ ¼
Z 1

0

srzðr; hÞrs dr ð3bÞ

ŝhzðs; hÞ ¼
Z 1

0

shzðr; hÞrs dr ð3cÞ
By use of the inversion theorem for the Mellin transform, the stresses and displacement components are

given by
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. 1. The geometry configuration and coordinate of a composite sharp wedge with infinite length and equal apex angle b=2.
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wðr; hÞ ¼ 1

2pi

Z qþi1

q�i1
ŵðs; hÞr�s ds ð4aÞ

srzðr; hÞ ¼
1

2pi

Z qþi1

q�i1
ŝrzðs; hÞr�s�1 ds ð4bÞ

shzðr; hÞ ¼
1

2pi

Z qþi1

q�i1
ŝhzðs; hÞr�s�1 ds ð4cÞ
Because of condition (2), the path of integration in the complex line integrals ReðsÞ ¼ q in (4a)–(4c) must

lie within a common strip of regularity of their intergrands, the choice of q is taken to be
q ¼ �e 0 < e < ðjReðs1ÞjÞ
where s1 denotes the location of the pole in the open strip �1 < ReðsÞ < 0 with the largest real part and Re

denotes the real part of the complex argument.

Applying the Mellin transform (3a) to (1) yields an ordinary differential equation for ŵðs; hÞ, the general
solution of this ordinary differential equation is readily known to be
ŵðs; hÞ ¼ c1 sinðshÞ þ c2 cosðshÞ ð5Þ

where c1 and c2 can be determined from the boundary conditions. The general solutions of stress com-

ponents in the transform domain are
ŝrzðs; hÞ ¼ �lsðc1 sinðshÞ þ c2 cosðshÞÞ ð6aÞ

ŝhzðs; hÞ ¼ lsðc1 cosðshÞ � c2 sinðshÞÞ ð6bÞ
3. Green’s function of infinite composite wedge

3.1. Free–free boundary condition

Consider a composite sharp wedge with infinite length along the radial direction and possess the apex

angle b subjected to a concentrated loading fz located at ðr; hÞ ¼ ðd; aÞ in material 1 as shown in Fig. 2.

Perfect bonding along the interface h ¼ b=2 is ensured by the stress and displacement continuity conditions,

and the traction free boundary conditions on the two radial edges are considered first in this section. The
region of the wedge is divided into three parts along the apex of wedge and the location of concentrated

loading as shown in Fig. 2. The general solutions for material 1 are expressed as
x
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Fig. 2. A composite sharp wedge with infinite length subjected to a concentrated force located at r ¼ d and h ¼ a.
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ŵð1Þ�ðs; hÞ ¼ c�1 sinðshÞ þ c�2 cosðshÞ for 06 h < a ð7aÞ
ŵð1Þþðs; hÞ ¼ cþ1 sinðshÞ þ cþ2 cosðshÞ for a < h6 b=2 ð7bÞ
For material 2, the general solution is
ŵð2Þðs; hÞ ¼ d1 sinðshÞ þ d2 cosðshÞ for b=26 h6 b ð8Þ
The associated traction free boundary conditions on the two radial edges are given by
ŝð1Þ
�

hz

���
h¼0

¼ 0; ŝð2Þhz

���
h¼b

¼ 0 ð9Þ
The jump conditions along h ¼ a on material 1 are expressed as
ŝð1Þ
þ

hz

����
h¼aþ

� ŝð1Þ
�

hz

���
h¼a�

¼ �fz d
s; wð1Þþ

���
h¼aþ

� wð1Þ� ��
h¼a�

¼ 0 ð10Þ
The continuity conditions along the interface h ¼ b=2 are
wð1Þþðr; b=2Þ ¼ wð2Þðr; b=2Þ; sð1Þ
þ

hz ðr; b=2Þ ¼ sð2Þhz ðr; b=2Þ ð11Þ
From Eqs. (7a), (7b) and (8) with the aid of conditions (9)–(11), the complete solutions in the transform
domain for materials 1 and 2 are
ŵð1Þ ¼ fzds

2l1s sinðsbÞ
½cosðsðb� hþ aÞÞ þ cosðsðb� h� aÞÞ þ k cosðsðh� aÞÞ þ k cosðsðhþ aÞÞ�

ŝð1Þrz ¼ �fzds

2 sinðsbÞ ½cosðsðb� hþ aÞÞ þ cosðsðb� h� aÞÞ þ k cosðsðh� aÞÞ þ k cosðsðhþ aÞÞ�

ŝð1Þhz ¼ fzds

2 sinðsbÞ ½sinðsðb� hþ aÞÞ þ sinðsðb� h� aÞÞ � k sinðsðh� aÞÞ � k sinðsðhþ aÞÞ�

ð12aÞ
ŵð2Þ ¼ fzds

ðl1 þ l2Þs sinðsbÞ
½cosðsðb� hþ aÞÞ þ cosðsðb� h� aÞÞ�

ŝð2Þrz ¼ �l2d
sfz

ðl1 þ l2Þ sinðsbÞ
½cosðsðb� hþ aÞÞ þ cosðsðb� h� aÞÞ�

ŝð2Þhz ¼ l2d
sfz

ðl1 þ l2Þ sinðsbÞ
½sinðsðb� hþ aÞÞ þ sinðsðb� h� aÞÞ�

ð12bÞ
where k ¼ ðl1 � l2Þ=ðl1 þ l2Þ. Rewrite the apex angle b in the form b ¼ p=n, n is a real positive number

and 1=26 n < 1. When n ¼ 1=2, we have b ¼ 2p, and this corresponds to the bimaterial interface crack

problem. The useful formulations of inverse Mellin transform are summarized as follows:
M�1
sinðs/Þ
sin s p

n

� �
" #

¼ n
p

rn sinðn/Þ
1þ 2rn cosðn/Þ þ r2n

M�1
cosðs/Þ
sin s p

n

� �
" #

¼ n
p

1þ rn cosðn/Þ
1þ 2rn cosðn/Þ þ r2n

0 < Re½s� < 1; 0 < / < p=n; nP 1=2 ð13Þ
The complete solutions of displacement and stresses for material 1 subjected to a concentrated loading are
obtained with the formulations given in Eqs. (12a) and (13) as follows
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wð1Þ ¼ fz
4pl1

X�ððr=dÞn; nðh½ � aÞÞ þ X�ððr=dÞn; nðhþ aÞÞ þ kXþððr=dÞn; nðh� aÞÞ þ kXþððr=dÞn; nðhþ aÞÞ�

ð14aÞ

sð1Þrz ¼ nfz
2pr

C�ððr=dÞn; nðh½ � aÞÞ þ C�ððr=dÞn; nðhþ aÞÞ þ kCþððr=dÞn; nðh� aÞÞ þ kCþððr=dÞn; nðhþ aÞÞ�

ð14bÞ

sð1Þhz ¼ nfz
2pr

H�ððr=dÞn; nðh½ � aÞÞ þH�ððr=dÞn; nðhþ aÞÞ � kHþððr=dÞn; nðh� aÞÞ � kHþððr=dÞn; nðhþ aÞÞ�

ð14cÞ

For material 2, the full-field solutions are
wð2Þ ¼ fz
2pðl1 þ l2Þ

X�ððr=dÞn; nðh½ � aÞÞ þ X�ððr=dÞn; nðhþ aÞÞ� ð15aÞ

sð2Þrz ¼ nl2fz
pðl1 þ l2Þr

C�ððr=dÞn; nðh½ � aÞÞ þ C�ððr=dÞn; nðhþ aÞÞ� ð15bÞ

sð2Þhz ¼ nl2fz
pðl1 þ l2Þr

H�ððr=dÞn; nðh½ � aÞÞ þH�ððr=dÞn; nðhþ aÞÞ� ð15cÞ
where
X�ðR;UÞ ¼ lnð1� 2R cosUþ R2Þ; C�ðR;UÞ ¼ R2 � R cosU
1� 2R cosUþ R2

H�ðR;UÞ ¼ R sinU
1� 2R cosUþ R2
The full-field solutions of displacement and stresses for a screw dislocation with Burger’s vector bz located
at ðr; hÞ ¼ ðd; aÞ can be obtained by the similar procedure and the results are
wð1Þ ¼ �bz
2p

W�ððr=dÞn; nðh½ � aÞÞ �W�ððr=dÞn; nðhþ aÞÞ þ kWþððr=dÞn; nðh� aÞÞ � kWþððr=dÞn; nðhþ aÞÞ�

ð16aÞ

sð1Þrz ¼ nl1bz
2pr

H�ððr=dÞn; nðh½ � aÞÞ �H�ððr=dÞn; nðhþ aÞÞ � kHþððr=dÞn; nðh� aÞÞ þ kHþððr=dÞn; nðhþ aÞÞ�

ð16bÞ

sð1Þhz ¼ �nl1bz
2pr

C�ððr=dÞn; nðh½ � aÞÞ � C�ððr=dÞn; nðhþ aÞÞ þ kCþððr=dÞn; nðh� aÞÞ � kCþððr=dÞn; nðhþ aÞÞ�

ð16cÞ

wð2Þ ¼ �l1bz
pðl1 þ l2Þ

W�ððr=dÞn; nðh½ � aÞÞ �W�ððr=dÞn; nðhþ aÞÞ� ð17aÞ

sð2Þrz ¼ nl1l2bz
pðl1 þ l2Þr

H�ððr=dÞn; nðh½ � aÞÞ �H�ððr=dÞn; nðhþ aÞÞ� ð17bÞ
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sð2Þhz ¼ �nl1l2bz
pðl1 þ l2Þr

C�ððr=dÞn; nðh½ � aÞÞ � C�ððr=dÞn; nðhþ aÞÞ� ð17cÞ
where
W�ðR;UÞ ¼ tan�1 ðR� 1Þ sinU
ðR� 1Þð1þ cosUÞ ð18Þ
It is surprising to note that the exact full-field solutions for materials 1 and 2 consist of only four and two

terms, respectively. Each term is only a combination of simple trigonometric functions. These basic solu-
tions will be used to construct the analytical solutions for the composite wedge with finite radius and the

finite annular composite wedge problems in the next two sections. The asymptotic displacement and stress

fields near the wedge apex for applying a concentrated load can be easily derived from Eqs. (14) and (15) by

taking the limit r ! 0. The singular fields near the wedge apex of material 1 are
lim
r!0

wð1Þðr; hÞ ¼ � l2fz
pl1ðl1 þ l2Þ

ðr=dÞnfcosðnðh� aÞÞ þ cosðnðhþ aÞÞg ð19aÞ

lim
r!0

sð1Þrz ðr; hÞ ¼ � nl2fz
pðl1 þ l2Þr

ðr=dÞnfcosðnðh� aÞÞ þ cosðnðhþ aÞÞg ð19bÞ

lim
r!0

sð1Þhz ðr; hÞ ¼
nl2fz

pðl1 þ l2Þr
ðr=dÞnfsinðnðh� aÞÞ þ sinðnðhþ aÞÞg ð19cÞ
For material 2, the singular fields are
lim
r!0

wð2Þðr; hÞ ¼ � fz
pðl1 þ l2Þ

ðr=dÞnfcosðnðh� aÞÞ þ cosðnðhþ aÞÞg ð20aÞ

lim
r!0

sð2Þrz ðr; hÞ ¼ � nl2fz
pðl1 þ l2Þr

ðr=dÞnfcosðnðh� aÞÞ þ cosðnðhþ aÞÞg ð20bÞ

lim
r!0

sð2Þhz ðr; hÞ ¼
nl2fz

pðl1 þ l2Þr
ðr=dÞnfsinðnðh� aÞÞ þ sinðnðhþ aÞÞg ð20cÞ
It is clearly shown in Eqs. (19) and (20) that the order of the stress singularity is 1� p=b and is independent
of the two material constants. The stress fields are bounded for the composite wedge with 0 < b < p. The
angular dependence of displacement and stresses near the wedge apes as presented in Eqs. (19) and (20) are

the same as those obtained by Ma and Hour (1989).

For the special case of a semi-infinite interface crack, i.e., n ¼ 1=2, the solutions of shear stress shz for
materials 1 and 2 for applying a concentrated load are reduced to simple formulations as follows
sð1Þhz ¼ fz
4pr

ðr=dÞ1=2 sinððh� aÞ=2Þ
1� 2ðr=dÞ1=2 cosððh� aÞ=2Þ þ r=d

"
þ ðr=dÞ1=2 sinððhþ aÞ=2Þ
1� 2ðr=dÞ1=2 cosððhþ aÞ=2Þ þ r=d

� kðr=dÞ1=2 sinððh� aÞ=2Þ
1þ 2ðr=dÞ1=2 cosððh� aÞ=2Þ þ r=d

� kðr=dÞ1=2 sinððhþ aÞ=2Þ
1þ 2ðr=dÞ1=2 cosððhþ aÞ=2Þ þ r=d

#
ð21aÞ

sð2Þhz ¼ l2fz
2pðl1 þ l2Þr

ðr=dÞ1=2 sinððh� aÞ=2Þ
1� 2ðr=dÞ1=2 cosððh� aÞ=2Þ þ r=d

"
þ ðr=dÞ1=2 sinððhþ aÞ=2Þ
1� 2ðr=dÞ1=2 cosððhþ aÞ=2Þ þ r=d

#
ð21bÞ
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The solutions for applying a screw dislocation are
sð1Þhz ¼ l1bz
4pr

"
� r=d � ðr=dÞ1=2 cosððh� aÞ=2Þ
1� 2ðr=dÞ1=2 cosððh� aÞ=2Þ þ r=d

þ r=d � ðr=dÞ1=2 cosððhþ aÞ=2Þ
1� 2ðr=dÞ1=2 cosððhþ aÞ=2Þ þ r=d

� k
r=d þ ðr=dÞ1=2 cosððh� aÞ=2Þ

1þ 2ðr=dÞ1=2 cosððh� aÞ=2Þ þ r=d
þ k

r=d þ ðr=dÞ1=2 cosððhþ aÞ=2Þ
1þ 2ðr=dÞ1=2 cosððhþ aÞ=2Þ þ r=d

#
ð22aÞ

sð2Þhz ¼ l1l2bz
2pðl1 þ l2Þr

r=d � ðr=dÞ1=2 cosððh� aÞ=2Þ
1� 2ðr=dÞ1=2 cosððh� aÞ=2Þ þ r=d

"
� r=d � ðr=dÞ1=2 cosððhþ aÞ=2Þ
1� 2ðr=dÞ1=2 cosððhþ aÞ=2Þ þ r=d

#
ð22bÞ
The well-known result of square root singularity near the interface crack tip is clearly indicated in Eqs. (21)

and (22). The corresponding result of mode III stress intensity factor can be derived from Eqs. (21) and (22)

and are expressed as
KIII ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
shzjh¼p ¼

fzffiffiffiffiffiffiffiffi
2pd

p ð1� kÞ cosða=2Þ ð23Þ

KIII ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
shzjh¼p ¼

l1bzffiffiffiffiffiffiffiffi
2pd

p ð1� kÞ sinða=2Þ ð24Þ
It is noted that for special apex angles, i.e. b ¼ p=n, where n is an integer, the solutions expressed in Eqs.

(14) and (15) can be decomposed into a finite number of Green’s functions of an infinite plane subjected to

concentrated forces. For these special angles, the Green’s function of the infinite composite wedge problem

can be obtained by the method of image. The numbers (N ) and locations ðr; hÞ of image singularities of

materials 1 and 2 can be expressed as follows:

For material 1,
N ¼ 4n� 1

ðr; hÞ ¼ ðd;�aÞ
ðd;mb� aÞ m ¼ 1; 2; . . . ; 2n� 1

�(
ð25Þ
and for material 2,
N ¼ 2n
ðr; hÞ ¼ ðd; 2mb� aÞ m ¼ 0; 1; . . . ; n� 1

�
ð26Þ
In fact, the numbers and locations of image singularities of material 1 and 2 are dependent only on the apex
angle of the composite wedge. For example, the geometry configuration of image singularities for material 1

and material 2 of the composite wedge with apex angle b ¼ 90� are shown in Figs. 3 and 4, respectively.

There are seven and four image singularities for material 1 and material 2, respectively. Therefore, the full-

filed solutions of a composite sharp wedge with special apex angles can also be represented by a series with

finite terms. For material 1, the solutions of series form can be summarized as
wð1Þ ¼ fz
4pl1

Xn

m¼1

X�ðr=d; h½ � 2ðm� 1Þp=nþ aÞ þ X�ðr=d; h� 2ðm� 1Þp=n� aÞ

þ kX�ðr=d; h� ð2m� 1Þp=nþ aÞ þ kX�ðr=d; h� ð2m� 1Þp=n� aÞ� ð27aÞ



y

x

4/π
d

Image point

d

Image point

zf

α 1

Fig. 3. The locations of image singularities for wedge 1 with an apex angle b=2 ¼ 45�.
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Fig. 4. The locations of image singularities for wedge 2 with an apex angle b=2 ¼ 45�.
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sð1Þrz ¼ fz
2pr

Xn

m¼1

C�ðr=d; h½ � 2ðm� 1Þp=nþ aÞ þ C�ðr=d; h� 2ðm� 1Þp=n� aÞ

þ kC�ðr=d; h� ð2m� 1Þp=nþ aÞ þ kC�ðr=d; h� ð2m� 1Þp=n� aÞ� ð27bÞ

sð1Þhz ¼ fz
2pr

Xn

m¼1

H�ðr=d; h½ � 2ðm� 1Þp=nþ aÞ þH�ðr=d; h� 2ðm� 1Þp=n� aÞ

þ kH�ðr=d; h� ð2m� 1Þp=nþ aÞ þ kH�ðr=d; h� ð2m� 1Þp=n� aÞ� ð27cÞ
For material 2, the solutions are
wð2Þ ¼ fz
2pðl1 þ l2Þ

Xn

m¼1

X�ðr=d; h½ � 2ðm� 1Þp=nþ aÞ þ X�ðr=d; h� 2ðm� 1Þp=n� aÞ� ð28aÞ

sð2Þrz ¼ l2fz
pðl1 þ l2Þr

Xn

m¼1

C�ðr=d; h½ � 2ðm� 1Þp=nþ aÞ þ C�ðr=d; h� 2ðm� 1Þp=n� aÞ� ð28bÞ

sð2Þhz ¼ l2fz
pðl1 þ l2Þr

Xn

m¼1

H�ðr=d; h½ � 2ðm� 1Þp=nþ aÞ þH�ðr=d; h� 2ðm� 1Þp=n� aÞ� ð28cÞ
Eqs. (27) and (28) present the solutions for the same problem as that in Eqs. (14) and (15) for the special
case that n is an integer. Obviously, the solutions in Eqs. (14) and (15) have simple forms and are also valid

for the case that n is not an integer.
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3.2. Fixed–fixed boundary condition

By using the similar method, the solutions of composite wedge with fixed displacement boundary

condition at the two edges, i.e., h ¼ 0 and h ¼ b, subjected to a concentrated load can be obtained and
summarized as follows
wð1Þ ¼ fz
4pl1

X�ððr=dÞn; nðh½ � aÞÞ � X�ððr=dÞn; nðhþ aÞÞ � kXþððr=dÞn; nðh� aÞÞ þ kXþððr=dÞn; nðhþ aÞÞ�

ð29aÞ

sð1Þrz ¼ nfz
2pr

C�ððr=dÞn; nðh½ � aÞÞ � C�ððr=dÞn; nðhþ aÞÞ � kCþððr=dÞn; nðh� aÞÞ þ kCþððr=dÞn; nðhþ aÞÞ�

ð29bÞ

sð1Þhz ¼ nfz
2pr

H�ððr=dÞn; nðh½ � aÞÞ �H�ððr=dÞn; nðhþ aÞÞ þ kHþððr=dÞn; nðh� aÞÞ � kHþððr=dÞn; nðhþ aÞÞ�

ð29cÞ
for material 1, and
wð2Þ ¼ fz
2pðl1 þ l2Þ

X�ððr=dÞn; nðh½ � aÞÞ � X�ððr=dÞn; nðhþ aÞÞ� ð30aÞ

sð2Þrz ¼ nl2fz
pðl1 þ l2Þr

C�ððr=dÞn; nðh½ � aÞÞ � C�ððr=dÞn; nðhþ aÞÞ� ð30bÞ

sð2Þhz ¼ nl2fz
pðl1 þ l2Þr

H�ððr=dÞn; nðh½ � aÞÞ �H�ððr=dÞn; nðhþ aÞÞ� ð30cÞ
for material 2. The solutions for applying a screw dislocation are
wð1Þ ¼ �bz
2p

W�ððr=dÞn; nðh½ � aÞÞ þW�ððr=dÞn; nðhþ aÞÞ � kWþððr=dÞn; nðh� aÞÞ � kWþððr=dÞn; nðhþ aÞÞ�

ð31aÞ

sð1Þrz ¼ nl1bz
2pr

H�ððr=dÞn; nðh½ � aÞÞ þH�ððr=dÞn; nðhþ aÞÞ þ kHþððr=dÞn; nðh� aÞÞ þ kHþððr=dÞn; nðhþ aÞÞ�

ð31bÞ

sð1Þhz ¼ �nl1bz
2pr

C�ððr=dÞn; nðh½ � aÞÞ þ C�ððr=dÞn; nðhþ aÞÞ � kCþððr=dÞn; nðh� aÞÞ � kCþððr=dÞn; nðhþ aÞÞ�

ð31cÞ
for material 1, and
wð2Þ ¼ �l1bz
pðl1 þ l2Þ

W�ððr=dÞn; nðh½ � aÞÞ þW�ððr=dÞn; nðhþ aÞÞ� ð32aÞ

sð2Þrz ¼ nl1l2bz
pðl1 þ l2Þr

H�ððr=dÞn; nðh½ � aÞÞ þH�ððr=dÞn; nðhþ aÞÞ� ð32bÞ



R.-L. Lin, C.-C. Ma / International Journal of Solids and Structures 41 (2004) 6041–6080 6051
sð2Þhz ¼ �nl1l2bz
pðl1 þ l2Þr

C�ððr=dÞn; nðh½ � aÞÞ þ C�ððr=dÞn; nðhþ aÞÞ� ð32cÞ
for material 2. It is interesting to note that the elementary functions appear in the solutions are the same for

the free–free (Eqs. (14)–(17)) and fixed–fixed (Eqs. (27)–(30)) boundary conditions.
4. Composite wedge with a finite radius and the method of image

Consider an isotropic composite wedge with a finite radius b and equal apex angle b=2 subjected to a

concentrated force fz applied at the location ðr; hÞ ¼ ðd; aÞ as shown in Fig. 5. In order to obtain the closed-

form solution of this problem without using the mathematics derivation, the image method for circular

configuration is used. Based on the result presented by Lin and Ma (2003) for the problem of single wedge
with finite radius that for the loading applied at the location ðd; aÞ, the location of the corresponding image

singularity for the circular boundary is ðb2=d; aÞ and is indicated in Fig. 6. The magnitude of the image

singularity depends on the boundary condition at the circumference segment. The summation of the

solutions for the applied loading at ðd; aÞ and ðb2=d; aÞ (the image point) for the composite wedge with

infinite length will satisfy the boundary condition (traction free or fixed) on the circular segment r ¼ b.
Since the analytical solution for composite wedge with infinite length has been developed in the previous

section, the solution for the composite wedge with a finite radius can be easily obtained without difficulty.

The solutions of the stress field shz are presented for various boundary condition as follows.
x

y

β

d
1

2

b

zf

α

Fig. 5. Schematic representation of a concentrated force applied in a composite sharp wedge with a finite radius.
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Fig. 6. The location of the image singularity with respect to the circular boundary.
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4.1. Free–free–free boundary condition

Consider the wedge are traction free for all boundaries, and one pair of self-equilibrium forces fz are
applied on the wedge at locations ðr; hÞ ¼ ðd1; a1Þ and ðd2; a2Þ in material 1. The solutions for shear stress shz
are
sð1Þhz ¼ nfz
2pr

X2

m¼1

ð�1Þmþ1½H�ððr=dmÞn; nðh� amÞÞ þH�ððr=dmÞn; nðhþ amÞÞ � kHþððr=dmÞn; nðh� amÞÞ

� kHþððr=dmÞn; nðhþ amÞÞ þH�ððrdm=b2Þn; nðh� amÞÞ þH�ððrdm=b2Þn; nðhþ amÞÞ

� kHþððrdm=b2Þn; nðh� amÞÞ � kHþððrdm=b2Þn; nðhþ amÞÞ� ð33Þ
for material 1, and
sð2Þhz ¼ nl2fz
pðl1 þ l2Þr

X2

m¼1

ð�1Þmþ1½H�ððr=dmÞn; nðh� amÞÞ þH�ððr=dmÞn; nðhþ amÞÞ

þH�ððrdm=b2Þn; nðh� amÞÞ þH�ððrdm=b2Þn; nðhþ amÞÞ� ð34Þ
for material 2. For a special apex angle that n ¼ 1=2, which represents the problem of a composite circular

disk with an interface crack length b, the associated shear stresses shz are
sð1Þhz ¼ fz
4pr

X2

m¼1

ð�1Þmþ1½H�ððr=dmÞ1=2; ðh� amÞ=2Þ þH�ððr=dmÞ1=2; ðhþ amÞ=2Þ � kHþððr=dmÞ1=2;

ðh� amÞ=2Þ � kHþððr=dmÞ1=2; ðhþ amÞ=2Þ þH�ððrdm=b2Þ1=2; ðh� amÞ=2Þ þH�ððrdm=b2Þ1=2;

ðhþ amÞ=2Þ � kHþððrdm=b2Þ1=2; ðh� amÞ=2Þ � kHþððrdm=b2Þ1=2; ðhþ amÞ=2Þ� ð35aÞ

sð2Þhz ¼ l2fz
2pðl1 þ l2Þr

X2

m¼1

ð�1Þmþ1 H�ððr=dmÞ1=2; ðh
h

� amÞ=2Þ þH�ððr=dmÞ1=2; ðhþ amÞ=2Þ

þH�ððrdm=b2Þ1=2; ðh� amÞ=2Þ þH�ððrdm=b2Þ1=2; ðhþ amÞ=2Þ
i

ð35bÞ
The corresponding stress intensity factor of this problem is
KIII ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
shz

���
h¼p

¼ fzffiffiffiffiffiffiffiffi
2pd

p ð1� kÞ½ð1þ d1=bÞ cosða1=2Þ � ð1þ d2=bÞ cosða2=2Þ� ð36Þ
For the problem that a screw dislocation with Burger’s vector bz is applied at the location ðr; hÞ ¼ ðd; aÞ in
material 1. The solutions for shear stress shz are
sð1Þhz ¼ �nl1bz
2pr

C�ððr=dÞn; nðh
�

� aÞÞ � C�ððr=dÞn; nðhþ aÞÞ þ kCþððr=dÞn; nðh� aÞÞ

� kCþððr=dÞn; nðhþ aÞÞ � C�ððrd=b2Þn; nðh� aÞÞ þ C�ððrd=b2Þn; nðhþ aÞÞ
� kCþððrd=b2Þn; nðh� aÞÞ þ kCþððrd=b2Þn; nðhþ aÞÞ

�
ð37Þ
for material 1, and
sð2Þhz ¼ �nl1l2bz
pðl1 þ l2Þr

C�ððr=dÞn; nðh
�

� aÞÞ � C�ððr=dÞn; nðhþ aÞÞ � C�ððrd=b2Þn; nðh� aÞÞ

þ C�ððrd=b2Þn; nðhþ aÞÞ
�

ð38Þ
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for material 2. For a special apex angle that b ¼ 2p (n ¼ 1=2), the associated shear stresses shz are
sð1Þhz ¼ �l1bz
4pr

C�ððr=dÞ1=2; ðh
h

� aÞ=2Þ � C�ððr=dÞ1=2; ðhþ aÞ=2Þ þ kCþððr=dÞ1=2; ðh� aÞ=2Þ

� kCþððr=dÞ1=2; ðhþ amÞ=2Þ � C�ððrd=b2Þ1=2; ðh� aÞ=2Þ þ C�ððrd=b2Þ1=2; ðhþ aÞ=2Þ

� kCþððrd=b2Þ1=2; ðh� aÞ=2Þ þ kCþððrd=b2Þ1=2; ðhþ aÞ=2Þ
i

ð39aÞ
sð2Þhz ¼ �l1l2bz
2pðl1 þ l2Þr

C�ððr=dÞ1=2; ðh
h

� aÞ=2Þ � C�ððr=dÞ1=2; ðhþ aÞ=2Þ � C�ððrd=b2Þ1=2; ðh� aÞ=2Þ

þ C�ððrd=b2Þ1=2; ðhþ aÞ=2Þ
i

ð39bÞ
The corresponding stress intensity factor for this problem is
KIII ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
shz

���
h¼p

¼ l1bzffiffiffiffiffiffiffiffi
2pd

p ð1� kÞð1� d=bÞ sinða=2Þ ð40Þ
4.2. Free–free–fixed boundary condition

Consider the composite wedge is fixed along the circular segment r ¼ b and is traction free on the radial

edges h ¼ 0 and h ¼ b. A concentrated loading fz is applied at the location ðr; hÞ ¼ ðd; aÞ. The full-filed

solution for material 1 is
sð1Þhz ¼ nfz
2pr

H�ððr=dÞn; nðh
�

� aÞÞ þH�ððr=dÞn; nðhþ aÞÞ � kHþððr=dÞn; nðh� aÞÞ

� kHþððr=dÞn; nðhþ aÞÞ �H�ððrd=b2Þn; nðh� aÞÞ �H�ððrd=b2Þn; nðhþ aÞÞ
þ kHþððrd=b2Þn; nðh� aÞÞ þ kHþððrd=b2Þn; nðhþ aÞÞ

�
ð41Þ
For material 2, the solution is
sð2Þhz ¼ nl2fz
pðl1 þ l2Þr

H�ððr=dÞn; nðh
�

� aÞÞ þH�ððr=dÞn; nðhþ aÞÞ �H�ððrd=b2Þn; nðh� aÞÞ

�H�ððrd=b2Þn; nðhþ aÞÞ
�

ð42Þ
For the special case that n ¼ 1=2, a composite circular disk with an interface crack length b, the stress

intensity factor is
KIII ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
shz

���
h¼p

¼ fzffiffiffiffiffiffiffiffi
2pd

p ð1� kÞð1� d=bÞ cosða=2Þ ð43Þ
4.3. Fixed–fixed–free boundary condition

Let the composite wedge be traction free at the boundary r ¼ b, and the boundaries h ¼ 0 and h ¼ b are

fixed. The concentrated loading fz (or the screw dislocation bz) is applied at the location ðr; hÞ ¼ ðd; aÞ, the
full-field solutions are
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sð1Þhz ¼ nfz
2pr

H�ððr=dÞn; nðh
�

� aÞÞ �H�ððr=dÞn; nðhþ aÞÞ þ kHþððr=dÞn; nðh� aÞÞ

� kHþððr=dÞn; nðhþ aÞÞ þH�ððrd=b2Þn; nðh� aÞÞ �H�ððrd=b2Þn; nðhþ aÞÞ
þ kHþððrd=b2Þn; nðh� aÞÞ � kHþððrd=b2Þn; nðhþ aÞÞ

�
ð44Þ
sð1Þhz ¼ �nl1bz
2pr

C�ððr=dÞn; nðh
�

� aÞÞ þ C�ððr=dÞn; nðhþ aÞÞ � kCþððr=dÞn; nðh� aÞÞ

� kCþððr=dÞn; nðhþ aÞÞ � C�ððrd=b2Þn; nðh� aÞÞ � C�ððrd=b2Þn; nðhþ aÞÞ
þ kCþððrd=b2Þn; nðh� aÞÞ þ kCþððrd=b2Þn; nðhþ aÞÞ

�
ð45Þ
for material 1, and
sð2Þhz ¼ nl2fz
pðl1 þ l2Þr

H�ððr=dÞn; nðh
�

� aÞÞ �H�ððr=dÞn; nðhþ aÞÞ þH�ððrd=b2Þn; nðh� aÞÞ

�H�ððrd=b2Þn; nðhþ aÞÞ
�

ð46Þ
sð2Þhz ¼ �nl1l2bz
pðl1 þ l2Þr

C�ððr=dÞn; nðh
�

� aÞÞ þ C�ððr=dÞn; nðhþ aÞÞ � C�ððrd=b2Þn; nðh� aÞÞ

� C�ððrd=b2Þn; nðhþ aÞÞ
�

ð47Þ
for material 2. For the special case that n ¼ 1=2, a composite circular disk with an interface crack length b,
the stress intensity factor is
KIII ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
srz
���
h¼p

¼ fzffiffiffiffiffiffiffiffi
2pd

p ð1� kÞð1þ d=bÞ sinða=2Þ ð48Þ
KIII ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
srz
���
h¼p

¼ l1bzffiffiffiffiffiffiffiffi
2pd

p ð1þ kÞð1� d=bÞ cosða=2Þ ð49Þ
4.4. Fixed–fixed–fixed boundary condition

The composite wedge is fixed for all boundaries, a concentrated forces fz is applied on the composite

wedge at the location ðr; hÞ ¼ ðd; aÞ. The solution of material 1 is
sð1Þhz ¼ nfz
2pr

H�ððr=dÞn; nðh
�

� aÞÞ �H�ððr=dÞn; nðhþ aÞÞ þ kHþððr=dÞn; nðh� aÞÞ

� kHþððr=dÞn; nðhþ aÞÞ �H�ððrd=b2Þn; nðh� aÞÞ þH�ððrd=b2Þn; nðhþ aÞÞ
� kHþððrd=b2Þn; nðh� aÞÞ þ kHþððrd=b2Þn; nðhþ aÞÞ

�
ð50Þ
For material 2, it is
sð2Þhz ¼ nl2fz
pðl1 þ l2Þr

H�ððr=dÞn; nðh
�

� aÞÞ �H�ððr=dÞn; nðhþ aÞÞ �H�ððrd=b2Þn; nðh� aÞÞ

þH�ððrd=b2Þn; nðhþ aÞÞ
�

ð51Þ
For the special case that n ¼ 1=2, a composite circular disk with an interface crack length b, the stress
intensity factor is
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KIII ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
srz
���
h¼p

¼ fzffiffiffiffiffiffiffiffi
2pd

p ð1� kÞ sinða=2Þð1� d=bÞ ð52Þ
The full-field solutions of displacement w and shear stress srz are presented in Appendices A and B for

applying a concentrated load and a screw dislocation, respectively. The anti-plane deformation of a single

isotropic wedge with a finite radius was studied by Kargarnovin et al. (1997) using the finite Mellin

transform and the full-field solution was presented by complicated formulation with an infinite series form.

However, the explicit full-field solutions for a composite wedge with a finite radius presented in this section

only consist of finite terms. The solutions for a single wedge with a finite radius can be easily obtained by

setting l1 ¼ l2 ¼ l and k ¼ 0. The image method used in this section for the circular boundary will be
extended in the next section to solve the more complicated finite annular composite wedge problem.
5. The annular composite wedge

Consider an annular composite wedge with equal apex angle b=2 and finite radii at r ¼ a and r ¼ b as

shown in Fig. 7. The methodology for constructing the analytical solution for this complicated problem is

similar to that used in the previous section. By using the closed-form solution of a composite wedge of

infinite extent presented in Section 3 and the method of image to satisfy two circular boundaries at r ¼ a
and r ¼ b, the complete solutions for the composite annular wedge can be easily constructed for various

boundary conditions. Since two circular segments are involved in this problem, the infinite number of image

singularities should be used to satisfy the two boundary conditions at r ¼ a and r ¼ b.
5.1. Free–free–free–free boundary condition

The first case considered in this section is an annular composite wedge subjected to one pair of self-

equilibrium forces fz at ðr; hÞ ¼ ðd1; a1Þ and ðd2; a2Þ in material 1 with traction free boundaries. The four

boundary conditions are
shzðr; 0Þ ¼ shzðr; bÞ ¼ 0 for a6 r6 b
srzða; hÞ ¼ srzðb; hÞ ¼ 0 for 06 h6 b

�
ð53Þ
To avoid the tedious expression of the full-field solutions for this problem, only the stress component shz is
presented in this section. The full-field solutions of displacement w and stress component srz are summa-
rized in Appendix C. The full-field solutions shz are
a b

y

β

zf

α

2

1

d

x

Fig. 7. Schematic diagram of a concentrated force applied in a composite annular wedge.
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sð1Þhz ¼ nfz
2pr

X1
‘¼0

X4

j¼1

X2

m¼1

ð�1Þmþ1 H�ðrj;/�Þ
�

þH�ðrj;/þÞ � kHþðrj;/�Þ � kHþðrj;/þÞ
�

ð54Þ
for material 1, and
sð2Þhz ¼ nl2fz
pðl1 þ l2Þr

X1
‘¼0

X4

j¼1

X2

m¼1

ð�1Þmþ1 H�ðrj;/�Þ
�

þH�ðrj;/þÞ
�

ð55Þ
for material 2, where
r1 ¼ ððb=aÞ2‘r=dmÞn; r2 ¼ ðb=aÞ2ð‘þ1Þrdm=b2
	 
n

; /� ¼ nðh� amÞ

r3 ¼ ðða=bÞ2‘rdm=b2Þn; r4 ¼ ða=bÞ2ð‘þ1Þr=dm
	 
n

; /þ ¼ nðhþ amÞ

8<
: ð56Þ
The explicit solutions presented in Eqs. (54) and (55) are infinite series with only one summation. The

solutions in Eqs. (54) and (55) for ‘ ¼ 0 and j ¼ 1 represent the Green’s function of a composite wedge with

infinite length which is discussed in the Section 3. All the other terms are superimposed to satisfy the

circular boundary conditions along r ¼ a and r ¼ b. The locations of image singularities along the radial

direction can be determined and summarized as follows:
r ¼ dmða=bÞ2ð‘þ1Þ
; ða=bÞ2ð‘þ1Þðb2=dmÞ for r < a

dmðb=aÞ2ð‘þ1Þ
; ðb=aÞ2‘ðb2=dmÞ for r > b

�
m ¼ 1; 2 and ‘ ¼ 0; 1; 2; . . . ;1 ð57Þ
For the case that an annular composite wedge subjected to a screw dislocation with Burger’s vector bz at
ðr; hÞ ¼ ðd; aÞ in material 1 with traction free boundaries. The full-field solution shz is
sð1Þhz ¼ nl1bz
2pr

X1
‘¼0

X4

j¼1

ð�1Þj C�ðrj;/�Þ
�

� C�ðrj;/þÞ þ kCþðrj;/�Þ � kCþðrj;/þÞ
�

ð58Þ
for material 1, and
sð2Þhz ¼ nl1l2bz
pðl1 þ l2Þr

X1
‘¼0

X4

j¼1

ð�1Þj C�ðrj;/�Þ
�

� C�ðrj;/þÞ
�

ð59Þ
for material 2, where
r1 ¼ ððb=aÞ2‘r=dÞn; r2 ¼ ððb=aÞ2ð‘þ1Þrd=b2Þn; /� ¼ nðh� aÞ;
r3 ¼ ðða=bÞ2ð‘þ1Þr=dÞn; r4 ¼ ðða=bÞ2‘rd=b2Þn; /þ ¼ nðhþ aÞ:

�
ð60Þ
The full-field solutions of displacement w and stress component srz are summarized in Appendix D.

5.2. Fixed–fixed–free–free boundary condition

Consider an annular composite wedge with two fixed and two free boundaries subjected to a concen-

trated force located at r ¼ d and h ¼ a. For the case that the boundary is fixed along the radial edges and is

free along the circular segments, the boundary conditions are
wðr; 0Þ ¼ wðr; bÞ ¼ 0 for a6 r6 b
srzða; hÞ ¼ srzðb; hÞ ¼ 0 for 06 h6b

�
ð61Þ
Follow a similar procedure as indicated in the previous case, the full-filed solutions are presented as follows.

For material 1, the full-filed solution is



R.-L. Lin, C.-C. Ma / International Journal of Solids and Structures 41 (2004) 6041–6080 6057
sð1Þhz ¼ nfz
2pr

X1
‘¼0

X4

j¼1

H�ðrj;/�Þ
�

�H�ðrj;/þÞ þ kHþðrj;/�Þ � kHþðrj;/þÞ
�

ð62Þ
For material 2,
sð2Þhz ¼ nl2fz
pðl1 þ l2Þr

X1
‘¼0

X4

j¼1

H�ðrj;/�Þ
�

�H�ðrj;/þÞ
�

ð63Þ
where H� is the same as that presented in Eq. (15) and
r1 ¼ ðb=aÞ2‘r=d
	 
n

; r2 ¼ ðb=aÞ2ð‘þ1Þrd=b2
	 
n

; /� ¼ nðh� aÞ

r3 ¼ ða=bÞ2‘rd=b2
	 
n

; r4 ¼ ða=bÞ2ð‘þ1Þr=d
	 
n

; /þ ¼ nðhþ aÞ

8<
: ð64Þ
5.3. Free–free–fixed–free boundary condition

An annular composite wedge subjected to a concentrated force is fixed along one radial edge r ¼ a and

the other three boundaries are traction free; the boundary conditions are
shzðr; 0Þ ¼ shzðr; bÞ ¼ 0 for a6 r6 b
wða; hÞ ¼ srzðb; hÞ ¼ 0 for 06 h6 b

�
ð65Þ
The full-filed solutions of shear stresses are summarized as follows
sð1Þhz ¼ nfz
2pr

X1
‘¼0

X4

j¼1

ð�1Þ‘þj�1 H�ðrj;/�Þ
�

þH�ðrj;/þÞ � kHþðrj;/�Þ � kHþðrj;/þÞ
�

ð66Þ
sð2Þhz ¼ nl2fz
pðl1 þ l2Þr

X1
‘¼0

X4

j¼1

ð�1Þ‘þj�1 H�ðrj;/�Þ
�

þH�ðrj;/þÞ
�

ð67Þ
The functions r1, r2, r4, r4, /
þ and /� are defined in Eq. (64).
5.4. Fixed–fixed–free–fixed boundary condition

Consider an annular composite wedge with three fixed and one free boundaries subjected to a screw
dislocation located at r ¼ d and h ¼ a in material 1. The boundary is free along one radial edge r ¼ a and

the other three boundaries are fixed. The boundary conditions are
wðr; 0Þ ¼ wðr;bÞ ¼ 0 for a6 r6 b
srzða; hÞ ¼ wðb; hÞ ¼ 0 for 06 h6 b

�
ð68Þ
Follow a similar procedure as indicated in the previous case, the full-filed solutions are presented as follows.

For material 1, the full-filed solution is
sð1Þhz ¼ nl1bz
2pr

X1
‘¼0

X4

j¼1

ð�1Þ‘þj C�ðrj;/�Þ
�

þ C�ðrj;/þÞ � kCþðrj;/�Þ � kCþðrj;/þÞ
�

ð69Þ
For material 2, the solution is
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sð2Þhz ¼ nl1l2bz
pðl1 þ l2Þr

X1
‘¼0

X4

j¼1

ð�1Þ‘þj C�ðrj;/�Þ
�

þ C�ðrj;/þÞ
�

ð70Þ
6. Image forces exerted on screw dislocations

The full-field stress distributions of composite wedges subjected to screw dislocations are analyzed in

detail in previous sections. The image forces exerted on screw dislocations will be investigated in this

section. According to the Peach–Koehler equation, the image force exerted on the screw dislocation can be

obtained from the stress filed at the location of the dislocation minus the self-stresses of the dislocation in

an infinite plane. In polar coordinate, the relations between image forces and stress fields are
Fr
Fh

� �
¼ �sihz

sirz

� �
bz ð71Þ
where Fr and Fh denote the image force exerted on a screw dislocation along the radial and circumferential

directions, respectively, and sihz ¼ shz � sshz, s
i
rz ¼ srz � ssrz in which sshz and ssrz are the self-stresses of the screw

dislocation. The self-stresses of a screw dislocation in an infinite plane are
sshz ¼
�lbz
2p

r � d cosðh� aÞ
r2 � 2rd cosðh� aÞ þ d2

ð72aÞ

ssrz ¼
lbz
2p

d sinðh� aÞ
r2 � 2rd cosðh� aÞ þ d2

ð72bÞ
The image forces exerted on the dislocation for different boundary conditions are summarized as follows.

6.1. Image forces exerted on screw dislocations for infinite composite wedges

6.1.1. Free–free boundary condition

From Eqs. (16), (71) and (72), the image forces exerted on a screw dislocation located at ðd; aÞ for the
traction free boundary condition are
F ð1Þ
r ðd; aÞ ¼ � l1b

2
z

4pd
ð73aÞ

F ð1Þ
h ðd; aÞ ¼ � l1b

2
z n

4pd
cos na
sin na



� k

sin na
cos na

�
ð73bÞ
for material 1, and
F ð2Þ
r ðd; aÞ ¼ � l2b

2
z

4pd
ð74aÞ

F ð2Þ
h ðd; aÞ ¼ l2b

2
z n

4pd
cos na
sin na



þ k

sin na
cos na

�
ð74bÞ
for material 2. It is shown in Eqs. (73a) and (74a) that the radial image force F ð1Þ
r in material 1 is inde-

pendent on the apex angle and circumferential location a of the screw dislocation. Both image forces, F ð1Þ
r

and F ð1Þ
h , are proportional to 1=d. It is interesting to note that the image force F ð1Þ

r is always negative in the

wedge, the image force F ð1Þ
h is zero along a ¼ tan�1

ffiffiffiffiffiffiffiffi
1=k

p	 

=n for k > 0 (i.e. l1 > l2). However, the image
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force F ð1Þ
h is non-zero in the wedge for the case k < 0. Similar features occur for the screw dislocation lo-

cated in material 2.
6.1.2. Fixed–fixed boundary condition

From Eqs. (31), (71) and (72), the image forces exerted on a screw dislocation located at ðd; aÞ for the
fixed boundary condition are
F ð1Þ
r ðd; aÞ ¼ l1b

2
z

4pd
ð2nð1� kÞ � 1Þ ð75aÞ
F ð1Þ
h ðd; aÞ ¼ nl1b

2
z

4pd
cos na
sin na



þ k

sin na
cos na

�
ð75bÞ
for material 1, and
F ð2Þ
r ðd; aÞ ¼ � l2b

2
z

4pd
ð1� 2nð1þ kÞÞ ð76aÞ
F ð2Þ
h ðd; aÞ ¼ � nl2b

2
z

4pd
cos na
sin na



� k

sin na
cos na

�
ð76bÞ
for material 2. It is quite different from traction free boundary that the radial image force Fr for the fixed

boundary condition is dependent on the apex angle and the material constant of material 2. The image

force F ð1Þ
r is zero in the situation that 2nð1� kÞ ¼ 1 for k > 0 (i.e. l1 > l2). However, the image force F ð1Þ

r is

non-zero in the wedge for the case k < 0.
6.2. Image forces exerted on screw dislocations for composite wedges with finite radius

6.2.1. Free–free–free boundary condition

From Eqs. (37), (B.2), (71) and (72), the image forces exerted on screw dislocations for traction free
boundary condition are
F ð1Þ
r ðd; aÞ ¼ � l1b

2
z

2pd
1

2

"
þ nðd=bÞ2nððd=bÞ2n þ 1Þð1� cos 2naÞ
ððd=bÞ2n � 1Þððd=bÞ4n � 2ðd=bÞ2n cos 2naþ 1Þ

þ nkðd=bÞ2nð1� ðd=bÞ2nÞð1� cos 2naÞ
ððd=bÞ2n þ 1Þððd=bÞ4n þ 2ðd=bÞ2n cos 2naþ 1Þ

#
ð77aÞ
F ð1Þ
h ðd; aÞ ¼ nl1b

2
z

2pd

"
� 1

2

cos na
sin na

þ ðd=bÞ2n sin 2na
ðd=bÞ4n � 2ðd=bÞ2n cos 2naþ 1

þ k
2

sin na
cos na

� kðd=bÞ2n sin 2na
ðd=bÞ4n þ 2ðd=bÞ2n cos 2naþ 1

#
ð77bÞ
for material 1, and
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F ð2Þ
r ðd; aÞ ¼ � l2b

2
z

2pd
1

2

"
þ nðd=bÞ2nððd=bÞ2n þ 1Þð1� cos 2naÞ
ððd=bÞ2n � 1Þððd=bÞ4n � 2ðd=bÞ2n cos 2naþ 1Þ

� nkðd=bÞ2nð1� ðd=bÞ2nÞð1� cos 2naÞ
ððd=bÞ2n þ 1Þððd=bÞ4n þ 2ðd=bÞ2n cos 2naþ 1Þ

#
ð78aÞ
F ð2Þ
h ðd; aÞ ¼ nl2b

2
z

2pd
1

2

cos na
sin na

"
� ðd=bÞ2n sin 2na
ðd=bÞ4n � 2ðd=bÞ2n cos 2naþ 1

þ k
2

sin na
cos na

� kðd=bÞ2n sin 2na
ðd=bÞ4n þ 2ðd=bÞ2n cos 2naþ 1

#
ð78bÞ
for material 2. The first term in Eqs. (77a) and (78a) represents the image force induced by the radial edges

while the second and third terms in (77a) and (78a) are image forces induced by the circular boundary r ¼ b.
6.2.2. Fixed–fixed–free boundary condition

From Eqs. (45), (B.6), (71) and (72), the image forces exerted on screw dislocations with two fixed and

one traction free boundary conditions are
F ð1Þ
r ðd; aÞ ¼ l1b

2
z

2pd
nð1

"
� kÞ � 1

2
þ nðd=bÞ2nðð3ðd=bÞ2n � 1Þ cos 2na� 2ðd=bÞ4n þ ðd=bÞ2n � 1Þ

ððd=bÞ2n � 1Þððd=bÞ4n � 2ðd=bÞ2n cos 2naþ 1Þ

þ nkðd=bÞ2nðð3ðd=bÞ2n þ 1Þ cos 2naþ 2ðd=bÞ4n þ ðd=bÞ2n þ 1Þ
ððd=bÞ2n þ 1Þððd=bÞ4n þ 2ðd=bÞ2n cos 2naþ 1Þ

#
ð79aÞ
F ð1Þ
h ðd; aÞ ¼ nl1b

2
z

2pd
1

2

cos na
sin na

"
� ðd=bÞ2n sin 2na
ðd=bÞ4n � 2ðd=bÞ2n cos 2naþ 1

þ k
2

sin na
cos na

� kðd=bÞ2n sin 2na
ðd=bÞ4n þ 2ðd=bÞ2n cos 2naþ 1

#
ð79bÞ
for material 1, and
F ð2Þ
r ðd; aÞ ¼ l2b

2
z

2pd
nð1

"
þ kÞ � 1

2
þ nðd=bÞ2nðð3ðd=bÞ2n � 1Þ cos 2na� 2ðd=bÞ4n þ ðd=bÞ2n � 1Þ

ððd=bÞ2n � 1Þððd=bÞ4n � 2ðd=bÞ2n cos 2naþ 1Þ

� nkðd=bÞ2nðð3ðd=bÞ2n þ 1Þ cos 2naþ 2ðd=bÞ4n þ ðd=bÞ2n þ 1Þ
ððd=bÞ2n þ 1Þððd=bÞ4n þ 2ðd=bÞ2n cos 2naþ 1Þ

#
ð80aÞ
F ð2Þ
h ðd; aÞ ¼ nl2b

2
z

2pd

"
� 1

2

cos na
sin na

þ ðd=bÞ2n sin 2na
ðd=bÞ4n � 2ðd=bÞ2n cos 2naþ 1

þ k
2

sin na
cos na

� kðd=bÞ2n sin 2na
ðd=bÞ4n þ 2ðd=bÞ2n cos 2naþ 1

#
ð80bÞ
for material 2.
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6.3. Image force exerted on screw dislocations for annular composite wedges

6.3.1. Free–free–free–free boundary condition

From Eqs. (58), (D.2), (71) and (72), the image forces exerted on screw dislocations for annular com-
posite wedges with traction free boundary condition can be expressed as
F ð1Þ
r ðd; aÞ ¼ � l1b

2
z

4pd
� nl1b

2
z

2pd

X1
‘¼0

X4

j¼1

ð�1Þj C�ðrj; 0Þ
�

� C�ðrj; 2naÞ þ kCþðrj; 0Þ � kCþðrj; 2naÞ
�

ð81aÞ

F ð1Þ
h ðd; aÞ ¼ � nl1b

2
z

4pd
cos na
sin na



� k

sin na
cos na

�
þ nl1b

2
z

2pd

X1
‘¼0

X4

j¼1

ð�1Þj H�ðrj; 2naÞ
�

� kHþðrj; 2naÞ
�

ð81bÞ
for material 1, and
F ð2Þ
r ðd; aÞ ¼ � l2b

2
z

4pd
� nl2b

2
z

2pd

X1
‘¼0

X4

j¼1

ð�1Þj C�ðrj; 0Þ
�

� C�ðrj; 2p� 2naÞ � kCþðrj; 0Þ

þ kCþðrj; 2p� 2naÞ
�

ð82aÞ

F ð2Þ
h ðd; aÞ ¼ l2b

2
z

4pd
cos na
sin na



þ k

sin na
cos na

�
þ nl2b

2
z

2pd

X1
‘¼0

X4

j¼1

ð�1Þj H�ðrj; 2p
�

� 2naÞ � kHþðrj; 2p� 2naÞ
�

ð82bÞ

for material 2, where
r1 ¼ ðb=aÞ2nð‘þ1Þ
; r2 ¼ ððb=aÞ2ð‘þ1Þðd=bÞ2Þn; r3 ¼ ða=bÞ2nð‘þ1Þ

; r4 ¼ ðða=bÞ2‘ðd=bÞ2Þn ð83Þ

The second term with summation represented in Eqs. (81) and (82) are image forces exerted on screw

dislocations by circular boundaries at r ¼ a and r ¼ b.

6.3.2. Fixed–fixed–free–fixed boundary condition

From Eqs. (69), (D.6), (71) and (72), the image forces exerted on screw dislocations for annular com-
posite wedges with three fixed and one traction free boundary conditions are
F ð1Þ
r ðd; aÞ ¼ l1b

2
z

4pd
ð2nð1� kÞ � 1Þ � nl1b

2
z

2pd

X1
‘¼0

X4

j¼1

ð�1Þ‘þj C�ðrj; 0Þ
�

þ C�ðrj; 2naÞ

� kCþðrj; 0Þ � kCþðrj; 2naÞ
�

ð84aÞ

F ð1Þ
h ðd; aÞ ¼ nl1b

2
z

4pd
cos na
sin a



þ k

sin na
cos na

�
� nl1b

2
z

2pd

X1
‘¼0

X4

j¼1

ð�1Þ‘þj H�ðrj; 2naÞ
�

þ kHþðrj; 2naÞ
�

ð84bÞ
for material 1, and
F ð2Þ
r ðd; aÞ ¼ l2b

2
z

4pd
ð2nð1þ kÞ � 1Þ � nl2b

2
z

2pd

X1
‘¼0

X4

j¼1

ð�1Þ‘þj C�ðrj; 0Þ
�

þ C�ðrj; 2p� 2naÞ

þ kCþðrj; 0Þ þ kCþðrj; 2p� 2naÞ
�

ð85aÞ

F ð2Þ
h ðd; aÞ ¼ nl2b

2
z

4pd



� cos na

sin na
þ k

sin na
cos na

�
� nl2b

2
z

2pd

X1
‘¼0

X4

j¼1

ð�1Þ‘þj H�ðrj; 2p
�

� 2naÞ þ kHþðrj; 2p� 2naÞ
�

ð85bÞ
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for material 2, where
Fig. 8.

equilib

with a
r1 ¼ ðb=aÞ2nð‘þ1Þ
; r2 ¼ ððb=aÞ2ð‘þ1Þðd=bÞ2Þn; r3 ¼ ðða=bÞ2‘ðd=bÞ2Þn; r4 ¼ ða=bÞ2nð‘þ1Þ ð86Þ
The second term with summation presented in Eqs. (84) and (85) are image forces exerted on screw dis-

locations by circular boundaries at r ¼ a and r ¼ b.
From the available solutions of full-field stresses presented in this study, it is easy to construct the image

forces exerted on screw dislocations in analytical forms. Although we only present the results for two

different boundary conditions for each case in this section, the image forces exerted on screw dislocations

for other boundary conditions can be obtained without difficulty.
7. Numerical results of full-field stress distributions and image forces

The analytical full-field solutions of shear stresses for various boundary conditions are explicitly pre-

sented in Section 4 for composite sharp wedges with finite radius and in Section 5 for composite annular

wedges. The solutions are functions of wedge angle b, finite radii a and b, material constants l1 and l2, and

the location of the concentrated load (or screw dislocation) ðd; aÞ. The full-field stress distributions for
composite wedges with a finite radius subjected to concentrated loads are calculated and shown in Figs. 8–10
(a) The full-field distribution of shear stress srz for a composite sharp wedge with an apex angle b ¼ 120� subjected to self-

rium forces located at ð0:4b; 0�Þ and ð0:7b; 45�Þ. (b) The full-field distribution of shear stress shz for a composite sharp wedge

n apex angle b ¼ 120� subjected to self-equilibrium forces located at ð0:4b; 0�Þ and ð0:7b; 45�Þ.
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for wedge angles b ¼ 120� and the ratio of shear modulus for materials 1 and 2 is l1=l2 ¼ 1=2. Figs. 8–10
present the shear stresses for three different boundary conditions. It is indicated in these figures that the

traction free boundary condition along the two edges for shz and along the circular segment for srz are
satisfied. The continuity condition along the interface for stress shz is satisfied while srz is discontinuous along
the interface. Because b ¼ 120� < 180�, no stress singularities near the apex of the composite wedge are

found for Figs. 8–10. The full-field distributions of shear stresses for composite wedges with a finite radius

subjected to a screw dislocation is shown in Fig. 11 for a wedge angle b ¼ 120�. The boundary conditions for
Fig. 11 are fixed along two edges and traction free along the circular segment, and l1=l2 ¼ 1=2. Figs. 12–14
present the shear stresses for a composite wedge with largest apex angle b ¼ 360� which is the problem of a

composite disk with an interface crack. In this case, the apex of the composite wedge is equivalent to an

interface crack tip and the well known square root stress singularities in the crack tip are clearly presented in

these figures. Figs. 15–17 are stress distributions of composite annular wedges subjected to concentrated
loads for three different boundary conditions indicated in Eqs. (53), (61) and (65), respectively. The apex

angle and radial length of the composite annular wedge is b ¼ 120� and a ¼ 0:5b. The ratio of shear modulus

for materials 1 and 2 is l1=l2 ¼ 2. It is worthy to note that the stresses distributions satisfy all the corre-

sponding boundary and continuity conditions. Figs. 18 and 19 are stress distributions of composite annular
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Fig. 9. (a) The full-field distribution of shear stress srz for a composite sharp wedge with an apex angle b ¼ 120� subjected to a

concentrated force located at ð0:5b; 45�Þ. (b) The full-field distribution of shear stress shz for a composite sharp wedge with an apex

angle b ¼ 120� subjected to a concentrated force located at ð0:5b; 45�Þ.
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Fig. 10. (a) The full-field distribution of shear stress srz for a composite sharp wedge with an apex angle b ¼ 120� subjected to a

concentrated force located at ð0:5b; 45�Þ. (b) The full-field distribution of shear stress shz for a composite sharp wedge with an apex

angle b ¼ 120� subjected to a concentrated force located at ð0:5b; 45�Þ.

6064 R.-L. Lin, C.-C. Ma / International Journal of Solids and Structures 41 (2004) 6041–6080
wedges subjected to a screw dislocation for two different boundary conditions. The apex angle and radial

length of the composite annular wedge are b ¼ 120� and a ¼ 0:4b. The ratio of shear modulus for materials 1
and 2 is l1=l2 ¼ 2. It is worthy to note that the stresses distributions satisfy all the corresponding boundary

and continuity conditions. The theoretical solutions of image forces Fr and Fh exerted on screw dislocations

are presented in Eqs. (73)–(76) for infinite wedge, in Eqs. (77)–(80) for wedges with finite radius and in Eqs.

(81)–(86) for annular wedges. The numerical results for composite wedges with finite radius are shown in

Figs. 20 and 21 for b ¼ 120�. It is found that there exist an equilibrium point (i.e. Fr ¼ Fh ¼ 0) for the traction

free boundary condition and the location for the equilibrium point in material 1 is indicated in Fig. 20.

However, no equilibrium point is found for the case that fixed boundaries along two radial edges and free

along the circular segment as shown in Fig. 21. The results of annular wedge with traction free boundary
condition and apex angle b ¼ 120� are shown in Fig. 22. The location of the equilibrium point is also

indicated in Fig. 22 which has only a slight difference to that indicated in Fig. 20.
8. Conclusions

In this study, a complete investigation on concentrated anti-plane forces and screw dislocations applied
in isotopic composite annular wedges is presented. The explicit closed-form solutions for displacement



0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

1.0

0.03

-0.8
-0.3

0.4

-0.1

0.00.2

-1.4

-0.03
-0.5

0.03

0.1

0.3
0.6

0.7
1.2

0.1

fixed

fixed

free

z

rz

b

b

1µ
τ

r/b

0.2 0.4 0.6 0.8 1.00.0

1.0

-1.1

-0.8-0.3

0.4

-2.0

-0.6

0.0

0.2

-1.4

0.2

0.4

0.6

0.8

1.0

-0.9

-0.5

-0.5fixed

fixed

free

r/b

z

z

b

b

1µ
τθ

-0.5

0.0

(a)

(b)

Fig. 11. (a) The full-field distribution of shear stress srz for a composite sharp wedge with an apex angle b ¼ 120� subjected to a screw

dislocation located at ð0:5b; 45�Þ. (b) The full-field distribution of shear stress shz for a composite sharp wedge with an apex angle

b ¼ 120� subjected to a screw dislocation located at ð0:5b; 45�Þ.
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and shear stresses are obtained by using the Mellin transform technique and the image method.

Many possible boundary conditions on radial edges and circular segments are taken into account. The

special case of interface crack problem, which is intersected for many applications, is also presented

in detail. It is worthy to note that even for the complicated geometrical configuration as the composite

annular wedge, the full-field solution consists of only one infinite summation. Each term presented in

the solution is only a combination of simple trigonometric functions. The explicit solutions with simple

forms of displacement and stresses presented in this study are very easy to use for numerical investigations

and theoretical analysis. The stress distributions for composite wedges with a finite radius and annular
wedges are discussed from numerical calculations. The image forces exerted on screw dislocations are

derived and the equilibrium points are identified base on the numerical calculations for special boundary

conditions.
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Fig. 12. (a) The full-field distribution of shear stress srz for a composite sharp wedge with an interface crack subjected to self-equi-

librium forces located at ð0:5b; 0�Þ and ð0:6b; 150�Þ. (b) The full-field distribution of shear stress shz for a composite sharp wedge with

an interface crack subjected to self-equilibrium forces located at ð0:5b; 0�Þ and ð0:6b; 150�Þ.
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Fig. 13. (a) The full-field distribution of shear stress srz for a composite sharp wedge with an interface crack subjected to a concentrated

force located at ð0:5b; 150�Þ. (b) The full-field distribution of shear stress shz for a composite sharp wedge with an interface crack

subjected to a concentrated force located at ð0:5b; 150�Þ.

R.-L. Lin, C.-C. Ma / International Journal of Solids and Structures 41 (2004) 6041–6080 6067



Fig. 14. (a) The full-field distribution of shear stress srz for a composite sharp wedge with an interface crack subjected to a concentrated

force located at ð0:5b; 150�Þ. (b) The full-field distribution of shear stress shz for a composite sharp wedge with an interface crack

subjected to a concentrated force located at ð0:5b; 150�Þ.
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Fig. 15. (a) The full-field distribution of shear stress srz for a composite annular wedge with an apex angle b ¼ 120� and a ¼ 0:5b
subjected to self-equilibrium forces located at ðb; 45�Þ and ð0:7b; 0�Þ. (b) The full-field distribution of shear stress shz for a composite

annular wedge with an apex angle b ¼ 120� and a ¼ 0:5b subjected to self-equilibrium forces located at ðb; 45�Þ and ð0:7b; 0�Þ.
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Appendix A. The full-field solutions w(r; h) and srz(r; h) of composite sharp wedges with finite radius

(concentrated loads)

A.1. Free–free–free boundary condition
wð1Þ ¼ fz
4pl1

X2

m¼1

ð�1Þmþ1½X�ððr=dmÞn; nðh� amÞÞ þ X�ððr=dmÞn; nðhþ amÞÞ þ kXþððr=dmÞn; nðh� amÞÞ

þ kXþððr=dmÞn; nðhþ amÞÞ þ X�ððrdm=b2Þn; nðh� amÞÞ þ X�ððrdm=b2Þn; nðhþ amÞÞ

þ kXþððrdm=b2Þn; nðh� amÞÞ þ kXþððrdm=b2Þn; nðhþ amÞÞ� ðA:1Þ
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Fig. 16. (a) The full-field distribution of shear stress srz for a composite annular wedge with an apex angle b ¼ 120� and a ¼ 0:5b
subjected to a concentrated force located at ð0:8b; 45�Þ. (b) The full-field distribution of shear stress shz for a composite annular wedge

with an apex angle b ¼ 120� and a ¼ 0:5b subjected to a concentrated force located at ð0:8b; 45�Þ.
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sð1Þrz ¼ nfz
2pr

X2

m¼1

ð�1Þmþ1½C�ððr=dmÞn; nðh� amÞÞ þ C�ððr=dmÞn; nðhþ amÞÞ þ kCþððr=dmÞn; nðh� amÞÞ

þ kCþððr=dmÞn; nðhþ amÞÞ þ C�ððrdm=b2Þn; nðh� amÞÞ þ C�ððrdm=b2Þn; nðhþ amÞÞ
þ kCþððrdm=b2Þn; nðh� amÞÞ þ kCþððrdm=b2Þn; nðhþ amÞÞ� ðA:2Þ

wð2Þ ¼ fz
2pðl1 þ l2Þ

X2

m¼1

ð�1Þmþ1½X�ððr=dmÞn; nðh� amÞÞ þ X�ððr=dmÞn; nðhþ amÞÞ

þ X�ððrdm=b2Þn; nðh� amÞÞ þ X�ððrdm=b2Þn; nðhþ amÞÞ� ðA:3Þ
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Fig. 17. (a) The full-field distribution of shear stress srz for a composite annular wedge with an apex angle b ¼ 120� and a ¼ 0:5b
subjected to a concentrated force located at ð0:8b; 45�Þ. (b) The full-field distribution of shear stress shz for a composite annular wedge

with an apex angle b ¼ 120� and a ¼ 0:5b subjected to a concentrated force located at ð0:8b; 45�Þ.
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sð2Þrz ¼ nl2fz
pðl1 þ l2Þr

X2

m¼1

ð�1Þmþ1½C�ððr=dmÞn; nðh� amÞÞ þ C�ððr=dmÞn; nðhþ amÞÞ

þ C�ððrdm=b2Þn; nðh� amÞÞ þ C�ððrdm=b2Þn; nðhþ amÞÞ� ðA:4Þ
A.2. Free–free–fixed boundary condition
wð1Þ ¼ fz
4pl1

½X�ððr=dÞn; nðh� aÞÞ þ X�ððr=dÞn; nðhþ aÞÞ þ kXþððr=dÞn; nðh� aÞÞ

þ kXþððr=dÞn; nðhþ aÞÞ � X�ððrd=b2Þn; nðh� aÞÞ � X�ððrd=b2Þn; nðhþ aÞÞ
� kXþððrd=b2Þn; nðh� aÞÞ � kXþððrd=b2Þn; nðhþ aÞÞ� ðA:5Þ
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Fig. 18. (a) The full-field distribution of shear stress srz for a composite annular wedge with an apex angle b ¼ 120� and a ¼ 0:4b
subjected to a screw dislocation located at ð0:6b; 45�Þ. (b) The full-field distribution of shear stress shz for a composite annular wedge

with an apex angle b ¼ 120� and a ¼ 0:4b subjected to a screw dislocation located at ð0:6b; 45�Þ.
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½C�ððr=dÞn; nðh� aÞÞ þ C�ððr=dÞn; nðhþ aÞÞ þ kCþððr=dÞn; nðh� aÞÞ

þ kCþððr=dÞn; nðhþ aÞÞ � C�ððrd=b2Þn; nðh� aÞÞ � C�ððrd=b2Þn; nðhþ aÞÞ

� kCþððrd=b2Þn; nðh� aÞÞ � kCþððrd=b2Þn; nðhþ aÞÞ� ðA:6Þ

wð2Þ ¼ fz
2pðl1 þ l2Þ

½X�ððr=dÞn; nðh� aÞÞ þ X�ððr=dÞn; nðhþ aÞÞ � X�ððrd=b2Þn; nðh� aÞÞ

� X�ððrd=b2Þn; nðhþ aÞÞ� ðA:7Þ
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Fig. 19. (a) The full-field distribution of shear stress srz for a composite annular wedge with an apex angle b ¼ 120� and a ¼ 0:4b
subjected to a screw dislocation located at ð0:6b; 45�Þ. (b) The full-field distribution of shear stress shz for a composite annular wedge

with an apex angle b ¼ 120� and a ¼ 0:4b subjected to a screw dislocation located at ð0:6b; 45�Þ.
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A.3. Fixed–fixed–free boundary condition
wð1Þ ¼ fz
4pl1

½X�ððr=dÞn; nðh� aÞÞ � X�ððr=dÞn; nðhþ aÞÞ � kXþððr=dÞn; nðh� aÞÞ

þ kXþððr=dÞn; nðhþ aÞÞ þ X�ððrd=b2Þn; nðh� aÞÞ � X�ððrd=b2Þn; nðhþ aÞÞ
� kXþððrd=b2Þn; nðh� aÞÞ þ kXþððrd=b2Þn; nðhþ aÞÞ� ðA:9Þ
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Fig. 20. (a) Image force Fr exerted on a screw dislocation in a composite wedge with apex angle b ¼ 120� and finite radius r ¼ b. (b)
Image force Fh exerted on a screw dislocation in a composite wedge with apex angle b ¼ 120� and finite radius r ¼ b.
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Fig. 21. (a) Image force Fr exerted on a screw dislocation in a composite wedge with apex angle b ¼ 120� and finite radius r ¼ b. (b)
Image force Fh exerted on a screw dislocation in a composite wedge with apex angle b ¼ 120�and finite radius r ¼ b.
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A.4. Fixed–fixed–fixed boundary condition
wð1Þ ¼ fz
4pl1

½X�ððr=dÞn; nðh� aÞÞ � X�ððr=dÞn; nðhþ aÞÞ � kXþððr=dÞn; nðh� aÞÞ

þ kXþððr=dÞn; nðhþ aÞÞ � X�ððrd=b2Þn; nðh� aÞÞ þ X�ððrd=b2Þn; nðhþ aÞÞ
þ kXþððrd=b2Þn; nðh� aÞÞ � kXþððrd=b2Þn; nðhþ aÞÞ� ðA:13Þ
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Fig. 22. (a) Image force Fr exerted on a screw dislocation in an annular wedge with apex angle b ¼ 120�. (b) Image force Fh exerted on a

screw dislocation in an annular wedge with apex angle b ¼ 120�.
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sð1Þrz ¼ nfz
2pr

½C�ððr=dÞn; nðh� aÞÞ � C�ððr=dÞn; nðhþ aÞÞ � kCþððr=dÞn; nðh� aÞÞ

þ kCþððr=dÞn; nðhþ aÞÞ � C�ððrd=b2Þn; nðh� aÞÞ þ C�ððrd=b2Þn; nðhþ aÞÞ
þ kCþððrd=b2Þn; nðh� aÞÞ � kCþððrd=b2Þn; nðhþ aÞÞ� ðA:14Þ

wð2Þ ¼ fz
2pðl1 þ l2Þ

½X�ððr=dÞn; nðh� aÞÞ � X�ððr=dÞn; nðhþ aÞÞ � X�ððrd=b2Þn; nðh� aÞÞ

þ X�ððrd=b2Þn; nðhþ aÞÞ� ðA:15Þ

sð2Þrz ¼ nl2fz
pðl1 þ l2Þr

½C�ððr=dÞn; nðh� aÞÞ � C�ððr=dÞn; nðhþ aÞÞ � C�ððrd=b2Þn; nðh� aÞÞ

þ C�ððrd=b2Þn; nðhþ aÞÞ� ðA:16Þ
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Appendix B. The full-field solutions w(r; h) and srz(r; h) of composite sharp wedges with finite radius (screw

dislocations)

B.1. Free–free–free boundary condition
wð1Þ ¼ �bz
2p

½W�ððr=dÞn; nðh� aÞÞ �W�ððr=dÞn; nðhþ aÞÞ þ kWþððr=dÞn; nðh� aÞÞ

� kWþððr=dÞn; nðhþ aÞÞ �W�ððrd=b2Þn; nðh� aÞÞ þW�ððrd=b2Þn; nðhþ aÞÞ
� kWþððrd=b2Þn; nðh� aÞÞ þ kWþððrd=b2Þn; nðhþ aÞÞ� ðB:1Þ

sð1Þrz ¼ nl1bz
2pr

½H�ððr=dÞn; nðh� aÞÞ �H�ððr=dÞn; nðhþ aÞÞ � kHþððr=dÞn; nðh� aÞÞ

þ kHþððr=dÞn; nðhþ aÞÞ �H�ððrd=b2Þn; nðh� aÞÞ þH�ððrd=b2Þn; nðhþ aÞÞ
þ kHþððrd=b2Þn; nðh� aÞÞ � kHþððrd=b2Þn; nðhþ aÞÞ� ðB:2Þ

wð2Þ ¼ �l1bz
pðl1 þ l2Þ

½W�ððr=dÞn; nðh� aÞÞ �W�ððr=dÞn; nðhþ aÞÞ �W�ððrd=b2Þn; nðh� aÞÞ

þW�ððrd=b2Þn; nðhþ aÞÞ� ðB:3Þ

sð2Þrz ¼ nl1l2bz
pðl1 þ l2Þr

½H�ððr=dÞn; nðh� aÞÞ �H�ððr=dÞn; nðhþ aÞÞ �H�ððrd=b2Þn; nðh� aÞÞ

þH�ððrd=b2Þn; nðhþ aÞÞ� ðB:4Þ
B.2. Fixed–fixed–free boundary condition
wð1Þ ¼ �bz
2p

½W�ððr=dÞn; nðh� aÞÞ þW�ððr=dÞn; nðhþ aÞÞ � kWþððr=dÞn; nðh� aÞÞ

� kWþððr=dÞn; nðhþ aÞÞ �W�ððrd=b2Þn; nðh� aÞÞ �W�ððrd=b2Þn; nðhþ aÞÞ
þ kWþððrd=b2Þn; nðh� aÞÞ þ kWþððrd=b2Þn; nðhþ aÞÞ� ðB:5Þ

sð1Þrz ¼ nl1bz
2pr

½H�ððr=dÞn; nðh� aÞÞ þH�ððr=dÞn; nðhþ aÞÞ þ kHþððr=dÞn; nðh� aÞÞ

þ kHþððr=dÞn; nðhþ aÞÞ �H�ððrd=b2Þn; nðh� aÞÞ �H�ððrd=b2Þn; nðhþ aÞÞ
� kHþððrd=b2Þn; nðh� aÞÞ � kHþððrd=b2Þn; nðhþ aÞÞ� ðB:6Þ

wð2Þ ¼ �l1bz
pðl1 þ l2Þ

½W�ððr=dÞn; nðh� aÞÞ þW�ððr=dÞn; nðhþ aÞÞ �W�ððrd=b2Þn; nðh� aÞÞ

�W�ððrd=b2Þn; nðhþ aÞÞ� ðB:7Þ

sð2Þrz ¼ nl1l2bz
pðl1 þ l2Þr

½H�ððr=dÞn; nðh� aÞÞ þH�ððr=dÞn; nðhþ aÞÞ �H�ððrd=b2Þn; nðh� aÞÞ

�H�ððrd=b2Þn; nðhþ aÞÞ� ðB:8Þ
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Appendix C. The full-field solutions w(r; h) and srz(r; h) of composite annular wedge (concentrated loads)

C.1. Free–free–free–free boundary condition
wð1Þ ¼ fz
4pl1

X1
‘¼0

X4

j¼1

X2

m¼1

ð�1Þmþ1½X�ðrj;/�Þ þ X�ðrj;/þÞ þ kXþðrj;/�Þ þ kXþðrj;/þÞ� ðC:1Þ

sð1Þrz ¼ nfz
2pr

X1
‘¼0

X4

j¼1

X2

m¼1

ð�1Þmþ1½C�ðrj;/�Þ þ C�ðrj;/þÞ þ kCþðrj;/�Þ þ kCþðrj;/þÞ� ðC:2Þ

wð2Þ ¼ fz
2pðl1 þ l2Þ

X1
‘¼0

X4

j¼1

X2

m¼1

ð�1Þmþ1½X�ðrj;/�Þ þ X�ðrj;/þÞ� ðC:3Þ

sð2Þrz ¼ nl2fz
pðl1 þ l2Þr

X1
‘¼0

X4

j¼1

X2

m¼1

ð�1Þmþ1½C�ðrj;/�Þ þ C�ðrj;/þÞ� ðC:4Þ
C.2. Fixed–fixed–free–free boundary condition
wð1Þ ¼ fz
4pl1

X1
‘¼0

X4

j¼1

½X�ðrj;/�Þ � X�ðrj;/þÞ � kXþðrj;/�Þ þ kXþðrj;/þÞ� ðC:5Þ

sð1Þrz ¼ nfz
2pr

X1
‘¼0

X4

j¼1

½C�ðrj;/�Þ � C�ðrj;/þÞ � kCþðrj;/�Þ þ kCþðrj;/þÞ� ðC:6Þ

wð2Þ ¼ fz
2pðl1 þ l2Þ

X1
‘¼0

X4

j¼1

½X�ðrj;/�Þ � X�ðrj;/þÞ� ðC:7Þ

sð2Þrz ¼ nl2fz
pðl1 þ l2Þr

X1
‘¼0

X4

j¼1

½C�ðrj;/�Þ � C�ðrj;/þÞ� ðC:8Þ
C.3. Free–free–fixed–free boundary condition
wð1Þ ¼ fz
4pl1

X1
‘¼0

X4

j¼1

ð�1Þ‘þj�1½X�ðrj;/�Þ þ X�ðrj;/þÞ þ kXþðrj;/�Þ þ kXþðrj;/þÞ� ðC:9Þ

sð1Þrz ¼ nfz
2pr

X1
‘¼0

X4

j¼1

ð�1Þ‘þj�1½C�ðrj;/�Þ þ C�ðrj;/þÞ þ kCþðrj;/�Þ þ kCþðrj;/þÞ� ðC:10Þ

wð2Þ ¼ fz
2pðl1 þ l2Þ

X1
‘¼0

X4

j¼1

ð�1Þ‘þj�1½X�ðrj;/�Þ þ X�ðrj;/þÞ� ðC:11Þ
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sð2Þrz ¼ nl2fz
pðl1 þ l2Þr

X1
‘¼0

X4

j¼1

ð�1Þ‘þj�1½C�ðrj;/�Þ þ C�ðrj;/þÞ� ðC:12Þ
Appendix D. The full-field solutions w(r; h) and srz(r; h) of composite annular wedge (screw dislocations)

D.1. Free–free–free–free boundary condition
wð1Þ ¼ bz
2p

X1
‘¼0

X4

j¼1

ð�1Þj½W�ðrj;/�Þ �W�ðrj;/þÞ þ kWþðrj;/�Þ � kWþðrj;/þÞ� ðD:1Þ

sð1Þrz ¼ nl1bz
2pr

X1
‘¼0

X4

j¼1

ð�1Þjþ1½H�ðrj;/�Þ �H�ðrj;/þÞ � kHþðrj;/�Þ þ kHþðrj;/þÞ� ðD:2Þ

wð2Þ ¼ l1bz
pðl1 þ l2Þ

X1
‘¼0

X4

j¼1

ð�1Þj½W�ðrj;/�Þ �W�ðrj;/þÞ� ðD:3Þ

sð2Þrz ¼ nl1l2bz
pðl1 þ l2Þr

X1
‘¼0

X4

j¼1

ð�1Þjþ1½H�ðrj;/�Þ �H�ðrj;/þÞ� ðD:4Þ
D.2. Fixed–fixed–free–fixed boundary condition
wð1Þ ¼ bz
2p

X1
‘¼0

X4

j¼1

ð�1Þ‘þj½W�ðrj;/�Þ þW�ðrj;/þÞ � kWþðrj;/�Þ � kWþðrj;/þÞ� ðD:5Þ

sð1Þrz ¼ �nl1bz
2pr

X1
‘¼0

X4

j¼1

ð�1Þ‘þj½H�ðrj;/�Þ þH�ðrj;/þÞ þ kHþðrj;/�Þ þ kHþðrj;/þÞ� ðD:6Þ

wð2Þ ¼ l1bz
pðl1 þ l2Þ

X1
‘¼0

X4

j¼1

ð�1Þ‘þj½W�ðrj;/�Þ þW�ðrj;/þÞ� ðD:7Þ

sð2Þrz ¼ �nl1l2bz
pðl1 þ l2Þr

X1
‘¼0

X4

j¼1

ð�1Þ‘þj½H�ðrj;/�Þ þH�ðrj;/þÞ� ðD:8Þ
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